An ultrasonic orthopaedic surgical device based on a cymbal transducer

Bejarano, F., Feeney, A., Wallace, R., Simpson, H. and Lucas, M. (2016) An ultrasonic orthopaedic surgical device based on a cymbal transducer. Ultrasonics, 72, pp. 24-33. (doi:10.1016/j.ultras.2016.07.004)

Bejarano, F., Feeney, A., Wallace, R., Simpson, H. and Lucas, M. (2016) An ultrasonic orthopaedic surgical device based on a cymbal transducer. Ultrasonics, 72, pp. 24-33. (doi:10.1016/j.ultras.2016.07.004)

[img]
Preview
Text
121109-1.pdf - Published Version
Available under License Creative Commons Attribution.

2MB

Abstract

An ultrasonic orthopaedic surgical device is presented, where the ultrasonic actuation relies on a modification of the classical cymbal transducer. All current devices consist of a Langevin ultrasonic transducer with a tuned cutting blade attached, where resonance is required to provide sufficient vibrational amplitude to cut bone. However, this requirement restricts the geometry and offers little opportunity to propose miniaturised devices or complex blades. The class V flextensional cymbal transducer is proposed here as the basis for a new design, where the cymbal delivers the required vibrational amplitude, and the design of the attached cutting insert can be tailored for the required cut. Consequently, the device can be optimised to deliver an accurate and precise cutting capability. A prototype device is presented, based on the cymbal configuration and designed to operate at 25.5kHz with a displacement amplitude of 30μm at 300V. Measurements of vibrational and impedance responses elucidate the mechanical and electrical characteristics of the device. Subsequent cutting tests on rat femur demonstrate device performance consistent with a commercial Langevin-based ultrasonic device and show that cutting is achieved using less electrical power and a lower piezoceramic volume. Histological analysis exhibits a higher proportion of live cells in the region around the cut site for the cymbal device than for a powered sagittal or a manual saw, demonstrating the potential for the ultrasonic device to result in faster healing.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Feeney, Dr Andrew and Bejarano, Mr Fernando and Lucas, Professor Margaret
Authors: Bejarano, F., Feeney, A., Wallace, R., Simpson, H., and Lucas, M.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Ultrasonics
Publisher:Elsevier
ISSN:0041-624X
ISSN (Online):1874-9968
Published Online:12 July 2016
Copyright Holders:Copyright © 2016 The Authors
First Published:First published in Ultrasonics 72: 24-33
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
490651Miniature Ultrasonic Cutting Devices for High Precision Minimal Access Orthopaedic Surgical ProceduresMargaret LucasEngineering & Physical Sciences Research Council (EPSRC)EP/G046948/1ENG - ENGINEERING SYSTEMS POWER & ENERGY