Litter size manipulation in laboratory mice: an example of how proteomic analysis can uncover new mechanisms underlying the cost of reproduction

Plumel, M. I., Stier, A. , Thiersé, D., van Dorsselaer, A., Criscuolo, F. and Bertile, F. (2014) Litter size manipulation in laboratory mice: an example of how proteomic analysis can uncover new mechanisms underlying the cost of reproduction. Frontiers in Zoology, 11, 41. (doi: 10.1186/1742-9994-11-41) (PMID:24891874) (PMCID:PMC4041047)

[img]
Preview
Text
121088.pdf - Published Version
Available under License Creative Commons Attribution.

597kB

Abstract

Background Life history theories predict that investment in current reproduction comes at a cost for future reproduction and survival. Oxidative stress is one of the best documented mechanisms underlying costs of reproduction to date. However, other, yet to be described molecular mechanisms that play a short term role during reproduction may explain the negative relationships underlying the cost of reproduction. To identify such new mechanisms, we used a global proteomic determination of liver protein profiles in laboratory adult female mice whose litter size had been either reduced or enlarged after birth. This litter size manipulation was expected to affect females by either raising or decreasing their current reproductive effort. At the same time, global parameters and levels of oxidative stress were also measured in all females. Results Based on plasma analyses, females with enlarged litters exhibited increased levels of oxidative stress at the date of weaning compared to females with reduced litters, while no significant difference was found between both the latter groups and control females. None of the liver proteins related to oxidative balance were significantly affected by the experimental treatment. In contrast, the liver protein profiles of females with enlarged and reduced litters suggested that calcium metabolism and cell growth regulation were negatively affected by changes in the number of pup reared. Conclusions Plasma oxidative stress levels in reproductive mice revealed that the degree of investment in reproduction can actually incur a cost in terms of plasmatic oxidative stress, their initial investment in reproduction being close to maximum and remaining at a same level when the energy demand of lactation is reduced. Liver proteomic profiles in reproductive females show that hepatic oxidative stress is unlikely to be involved in the cost of reproduction. Reproductive females rather exhibited liver protein profiles similar to those previously described in laboratory ageing mice, thus suggesting that hepatic cell pro-ageing processes may be involved in the cost of reproduction. Overall, our data illustrate how a proteomic approach can unravel new mechanisms sustaining life-history trade-offs, and reproduction costs in particular.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Stier, Dr Antoine
Authors: Plumel, M. I., Stier, A., Thiersé, D., van Dorsselaer, A., Criscuolo, F., and Bertile, F.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Frontiers in Zoology
Publisher:BioMed Central Ltd.
ISSN:1742-9994
ISSN (Online):1742-9994
Published Online:20 May 2014
Copyright Holders:Copyright © 2014 Plumel et al.
First Published:First published in Frontiers in Zoology 11:41
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record