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Summary 

The field of viral genomics and bioinformatics is experiencing a 

strong resurgence due to high-throughput sequencing (HTS) 

technology, which enables the rapid and cost-effective sequencing and 

subsequent assembly of large numbers of viral genomes. In addition, 

the unprecedented power of HTS technologies has enabled the 

analysis of intra-host viral diversity and quasispecies dynamics in 

relation to important biological questions on viral transmission, 

vaccine resistance and host jumping. HTS also enables the rapid 

identification of both known and potentially new viruses from field 

and clinical samples, thus adding new tools to the fields of viral 

discovery and metagenomics. Bioinformatics has been central to the 

rise of HTS applications because new algorithms and software tools 

are continually needed to process and analyse the large, complex 

datasets generated in this rapidly evolving area. In this paper, the 

authors give a brief overview of the main bioinformatics tools 

available for viral genomic research, with a particular emphasis on 

HTS technologies and their main applications. They summarise the 

major steps in various HTS analyses, starting with quality control of 

raw reads and encompassing activities ranging from consensus and de 

novo genome assembly to variant calling and metagenomics, as well 

as RNA sequencing. 
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Introduction 

Since the discovery by Ivanovski in 1892 that tobacco mosaic disease 

is caused and transmitted by fine pore filtrates, viruses have been 

isolated and characterised from animals, plants, protists, bacteria and 

even other viruses (1). Viruses have been invaluable model systems in 

the development of molecular biology and genomics. They can also be 

highly contagious pathogens with devastating effects on human and 

animal health, and have consequently been studied in detail for 

decades. Viruses evolve rapidly because of their large population sizes 

and high replication rates. RNA viruses have particularly high 

mutation rates due to the poor fidelity of their RNA polymerases, 

which enables them to adapt rapidly to new host environments and to 

selective pressures such as drug treatments (2). 

The field of viral genomics and bioinformatics is now experiencing a 

strong resurgence owing to high-throughput sequencing (HTS) 

technology, which provides a means for the rapid and cost-effective 

sequencing and subsequent assembly of large numbers of viral 

genomes (3, 4). In addition, the unprecedented power of HTS 

technologies has enabled the analysis of intra-host viral genetic 

diversity and quasispecies dynamics relevant to important biological 

questions on viral transmission, vaccine resistance and host jumping. 

HTS also enables the rapid identification of both known and 

potentially new viruses (for example, Middle East respiratory 

syndrome coronavirus [5]) from field and clinical samples, thus 

adding new tools to the fields of viral discovery and metagenomics. 

Bioinformatics has been central to the rise of HTS because new 

algorithms and software tools are continually needed to process and 

analyse the large and complex datasets generated in this rapidly 

evolving area. However, bioinformatics is not a new field. It has been 

an integral part of biological research for many years and is routinely 

used for genome alignment and annotation, and to identify functional 
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motifs, recombination events and phylogenetic relationships. 

Nonetheless, it is safe to say that HTS has provided a great impetus 

for the ongoing development of bioinformatics. Most bioinformatics 

tools are publicly available (although many are limited to UNIX-based 

operating systems) and utilise common formats that facilitate data 

exchange and further software development. There are also a number 

of key database resources that store a vast array of viral genomic and 

associated meta-data, such as GenBank (6) and the Virus Pathogen 

Database (7). 

In this paper, the authors give a brief overview of the main 

bioinformatics tools available for viral genomic research, with a 

particular emphasis on HTS technologies and their major applications. 

They summarise the major steps involved in various HTS analyses, 

starting with quality control (QC) of raw reads and encompassing 

activities ranging from consensus and de novo genome assembly to 

variant calling and metagenomics (as illustrated in Fig. 1). It is not 

feasible to describe all available bioinformatics tools in this paper; 

however, readers are directed to Figure 2 for examples of the major 

tools available for each analytical step. 

Read quality control 

The first step in all HTS analyses is QC. Typically, the output of a 

sequencing run is a file containing millions of reads that represent 

DNA sequences originating from the analysed sample. These reads are 

either outputted in, or can be readily converted to, the standard 

FASTQ format (8), which is used for storing biological sequences 

with their associated quality scores. Sequencing artefacts (e.g. 

primer/adaptor contamination) and sequencing errors (e.g. base 

miscalls) are common in HTS reads, making QC extremely important 

for accurate downstream analysis. Adapter sequences vary depending 

on the library preparation protocol, and these need to be removed 

because they can hinder the correct mapping of reads and influence 

single nucleotide polymorphism calling and other analyses. Two of 

the most widely used tools for removing adapter sequences are 

Cutadapt (cutadapt.readthedocs.org/en/stable/) and Trimmomatic (9). 
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HTS reads are also usually trimmed to remove poor-quality bases 

from the ends of reads (typically the 3′ end because quality tends to 

decrease along the length of the read) and then filtered. Filtering 

involves the complete removal of some reads from the dataset, such as 

those of poor average quality or short length, or those containing 

ambiguous bases. In some analyses (e.g. de novo assembly), it can 

also be beneficial to remove exact read duplicates from the dataset. 

Two of the most widely used tools for read filtering and trimming are 

Trim Galore 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and 

PRINSEQ (10). It can often be useful to run a host sequence depletion 

step in which reads are first aligned to the host genome of the sample. 

Only the unmapped (unaligned) reads are then used for mapping 

against a viral genome or for de novo assembly. An additional QC 

step can be performed for reads generated by the Ion Torrent and 

Roche 454 platforms, using tools such as RC454 (11) and Coral (12) 

to correct for carry forward and incomplete extension errors (CAFIE), 

particularly at homopolymeric regions. In addition, tools such as 

PyroCleaner (13), pbh5tools 

(github.com/PacificBiosciences/pbh5tools) and PoreTools (14) can 

process 454 (sff format), PacBio (hd5 format) and Oxford Nanopore 

Technologies (FAST5 format) reads, respectively, in their native 

formats. 

Mapping and consensus sequence generation 

One of the most common HTS applications for viral samples is 

consensus sequencing of full-length viral genomes. After QC, HTS 

reads can be mapped to a known reference genome sequence, which is 

typically closely related to the genome of interest. Mapping is a 

critical step in HTS analysis because it determines where each read 

aligns on the reference genome, and thus affects all downstream 

analyses, such as variant calling. Most mapping programs are hash-

based tools (e.g. Mosaik [15] and Stampy [16]) or Burrows–Wheeler 

transform (BWT)-based tools (e.g. BWA [17] and Bowtie2 [18]). 

However, specialist mapping tools are typically needed for longer 

reads: BLASR (19) and LAST (20) are commonly used for reads 
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generated by PacBio and Oxford Nanopore Technologies, 

respectively. BWT-based mapping programs can rapidly align reads to 

a reference genome using low computational resources; in contrast, 

hash-based programs are more sensitive tools for aligning diverse 

reads to distantly related reference genomes. This makes reference 

genome selection an important step: if the reference genome is too 

distantly related to the sample, mapping programs may struggle to 

map the majority of reads, resulting in poor or incomplete coverage. 

The vast majority of mapping tools utilise the Sequence 

Alignment/Map (SAM) format (21) to store all read mappings. A 

SAM file is usually converted into the Binary Alignment/Map (BAM) 

format, which holds the same data but in a binary format. This makes 

the file smaller and it is therefore faster to sort and index the reads. 

The entire BAM alignment of every read to the reference genome can 

be visualised using tools such as Tablet (22) and IGV (23). This 

enables users to inspect coverage and variation visually across the 

genome. SAMtools is a key bioinformatic tool that provides various 

utilities for manipulating alignments in the SAM/BAM format, 

including sorting, merging, indexing and generating alignments in a 

per-position format (21). To call a consensus sequence, one must first 

identify the nucleotide differences (mutations and indels) in the 

sample relative to the reference genome. SAMtools can be used in 

conjunction with VCFtools (24) to identify variants from the reference 

genome and generate a consensus sequence for the viral sample; an 

alternative tool for consensus sequence generation is VarScan (25). 

The consensus sequence is a critical output and can be used for a vast 

range of subsequent analyses. 

Intra-host viral diversity and quasispecies 

reconstruction 

High-throughput sequencing enables the level of diversity within the 

whole viral population to be examined and monitored either within 

(intra) or among (inter) individual hosts in order to investigate 

evolutionary events such as selection and bottlenecks (Fig. 3). 

Furthermore, the high sequencing depth of viral samples enables the 
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identification of important variants present at low frequencies within 

the viral population, such as those that increase pathogenicity or 

convey drug resistance. For example, HTS has been used to 

investigate foot and mouth disease virus evolution at the intra- and 

inter-host levels in a cow transmission chain (26), and to detect high-

pathogenicity avian influenza mutations in low-pathogenicity samples 

from an early epidemic stage (27). However, it is hard to distinguish 

low frequency viral variants from errors introduced during sample 

preparation, such as those originating from reverse transcription or 

polymerase chain reaction (PCR) (28). More errors are introduced by 

the sequencer itself in the form of base miscalls, CAFIE errors (29) or 

systematic errors that occur more frequently around certain motifs, 

such as GGC and GGX on the Illumina platform (30). 

A number of computational tools are available for calling variants at 

all frequencies from viral samples, such as Lo-Freq (31) and V-Phaser 

(32), which consider the sources that may have introduced errors. Lo-

Freq utilises read quality scores to model base miscalls and identify 

strand-biased variants. In strand bias, a variant is predominantly 

observed on reads oriented in a single direction, which suggests that 

the variant is an artefact. It is a characteristic of many systematic 

errors because the causative sequence motif is not present in both 

orientations. V-Phaser can potentially detect variants at lower 

frequencies by utilising information on the co-occurrence of variants 

on individual reads. However, these tools operate on the basis of 

certain assumptions and, moreover, do not consider reverse 

transcription or PCR errors (28). In alternative approaches, variant 

calling utilises modifications to standard protocols, such as circular re-

sequencing (33) and incorporating unique barcodes into sample DNA 

(34, 35). These approaches have been applied successfully to viral 

population and fitness analyses. Similar circular re-sequencing 

approaches are also used to correct for sequencing errors in long reads 

in the SMRTbell technology (developed by PacBio) and in 2D 

consensus sequences generated by Oxford Nanopore Technologies 

applications. 
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Variant callers identify individual variants across the genome but do 

not identify which variants are located together in individual genomes 

(unless they are located within a read length of each other). RNA 

viruses, in particular, have high mutation rates and exist within their 

hosts as large, complex and heterogeneous populations comprising a 

spectrum of related but non-identical genome sequences termed the 

‘quasispecies’. Viral quasispecies represent a group of interactive 

genomes rather than a collection of diverse variants, and it has been 

shown that the quasispecies population, rather than the individual 

variants, is the target of evolutionary selection (36). Therefore, 

characterisation of the viral quasispecies and identification of 

individual viral haplotypes can be a valuable analytical step. Given the 

short length and error-prone nature of HTS reads, quasispecies 

reconstruction is computationally challenging. However, 

computational tools such as QuRe (37) and ShoRAH (38) can 

construct overlapping windows on a genome using read alignments 

for local haplotype reconstruction, and then collect the results from all 

individual windows to reconstruct global haplotypes and estimate their 

frequencies. 

Recombination, phylogeny and selection 

High-throughput sequencing applications can go beyond defining the 

consensus sequence to explore the composition and dynamics of the 

underlying viral population. However, the consensus sequence 

remains critical for many analyses, such as those focusing on 

recombination, phylogenetics and selection. Recombination is the 

exchange of genetic information between non-segmented viruses. It is 

therefore a powerful evolutionary process that enables viruses to 

acquire new genetic combinations, which can assist the process of 

immune system evasion or cross-species transmission. For example, 

western encephalitis virus arose through recombination between a 

Sindbis-like virus and an eastern equine encephalitis virus, which 

could explain its successful establishment and widespread distribution 

and (39). As recombination can lead to the misquantification of 

selection pressures and phylogenetic estimations, screening for 

recombination is essential in phylogenetic analyses. Methods for 
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detecting recombination can be broadly split into four categories (40), 

all of which have been implemented in a plethora of bioinformatics 

tools (Fig. 4): 

– distance methods use genetic differences among sequences at 

different positions across the genome to identify the presence of 

recombination 

–  phylogenetic methods explore inconsistencies between the tree 

topologies of different parts of the genome 

–  compatibility methods are phylogenetic approaches that test on a 

site-by-site basis whether each site is compatible with the same tree 

–  substitution distribution methods test for the fit to an expected 

statistical distribution or for significant clustering of substitutions. 

Once recombination has been accounted for, one may want to 

reconstruct the evolutionary and epidemiological dynamics of the non-

recombining part of the viral genome. Phylogenetic reconstruction can 

be either distance based (e.g. neighbour-joining) or character based 

(e.g. maximum parsimony, maximum likelihood or Bayesian 

inference). A vast number of tools available for phylogenetic analysis; 

it is therefore impractical to list all available resources in this paper. 

However, readers are directed to a recent review of these methods (41) 

and a detailed catalogue of the phylogenetic packages maintained by 

the Felsenstein laboratory 

(evolution.genetics.washington.edu/phylip/software.html). One tool 

that has become increasingly popular in recent years is BEAST (42), 

which uses time-measured phylogenetic trees for Bayesian 

evolutionary analyses such as coalescent-based population genetics, 

phylodynamics and phylogeography. 

Another important analytical step is to identify the selection pressures 

that have shaped the molecular evolution of a virus. The methods 

available for this can be split into three classes (43): 

– counting methods that enumerate the numbers of non-synonymous 

and synonymous substitutions along the phylogeny 
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– random effects models that assume a distribution of rates across 

sites and infer the rates of individual sites according to the distribution 

– fixed effects models that estimate the rate of non-synonymous to 

synonymous substitutions on a site-by-site basis. 

When a sufficiently large dataset of related sequences is available 

(>40), the three approaches provide similar results. However, it is 

advisable to apply all three methods and use the consensus to avoid 

false results (43). The two main packages that implement these 

models are PAML (44) and HYPHY (43; the latter is also available on 

the Datamonkey webserver). 

De novo genome assembly 

If the reference sequence is significantly divergent from the sample or 

if no reference is available, then it is necessary to generate a consensus 

sequence by de novo assembly of the reads. As an example, this 

approach was used to construct the genome sequence of elephant 

endotheliotropic herpesvirus from samples in which as little as 0.04% 

of the DNA was viral (45). Sequencing errors disrupt the assembly 

process, so it is essential to trim poor quality bases and remove 

adapter sequences from the read datasets before running assemblies. 

Most algorithms used for de novo assembly fall into two groups: 

overlap layout consensus (OLC) assemblers and de Bruijn graph 

assemblers. OLC assemblers, such as MIRA (46) and Edena (47), 

work by first identifying pairs of reads that overlap and then 

constructing a graph in which reads are represented by nodes in the 

graph, with overlapping reads connected by edges (lines). The graph is 

then analysed to find paths through the graph that traverse multiple 

edges, thus enabling reads to be tiled in the correct order to generate a 

genome sequence. However, the OLC approach does not typically 

scale well because the overlap graph can become very large. 

Other assemblers, such as ABySS (48) and Velvet (49), utilise a de 

Bruijn graph algorithm, which reduces the computational effort by 

breaking reads into shorter strings of a fixed length k (called k-mers). 

The de Bruijn graph captures overlaps of length k-1 between these k-
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mers, which avoids the need to calculate overlaps between long 

sequences. The reads themselves are not modelled but are instead 

represented by paths through a graph; thus, this approach has proved 

highly effective. However, there is an upper limit to the length of k 

(generally about 128) that can be handled, even by a powerful 

computer. 

De novo assemblies typically consist of a number of long, contiguous 

sequences (contigs) rather than complete genomes because sequencing 

errors, repeat regions and areas with low coverage tend to confound 

the assembly process. Contigs may be joined together to produce a 

draft genome by alignment to a related viral reference sequence using 

software such as Abacas (50) or Scaffold Builder (51). If a reference is 

not available, paired-end reads or mate-pair reads (i.e. long-range read 

pairs, typically spanning 2–10 kilobases) can be utilised to scaffold 

the contigs into the correct linear order and produce a draft genome 

containing gaps. Many de novo assembly packages carry out this 

scaffolding step automatically on assembled contigs when given 

paired-end read data, but stand-alone scaffolders are also available, 

including Bambus2 (52) and BESST (53). Alternatively, assemblies 

made using short read data, such as those from the Illumina or Ion 

Torrent platforms, can be improved by using a second dataset with 

longer reads to join contigs. Gap-filling software (e.g. IMAGE [54] 

and GapFiller [55]) may be used to close some of the gaps remaining 

in the draft genome. Their algorithms require paired-end data and 

identify specific read pairs in which one member matches the end of a 

contig and the other falls within the gap. Such read subsets are used to 

extend the contigs iteratively and close gaps by k-mer overlap or local 

de novo assembly. However, repeat regions with a period longer than 

the read length cannot be resolved; these require either PCR followed 

by Sanger sequencing or data from an HTS platform that yields longer 

reads. 

Since de novo assemblers make errors, it is important to check the 

draft genome, for example by mapping the reads back to the 

assembled consensus genome and inspecting the alignment for issues 

such as miscalled bases, short indels and regions with no coverage. 
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Although this process is time-consuming, packages such as ICORN2 

(56) have been developed to automate the checking and error 

correction of viral genomes, while some assemblers (e.g. SPAdes 

[57]) are capable of carrying out most of the processes described in 

this section. 

Metagenomic analyses 

Traditional methods of viral detection are based on the isolation and 

culture of viral pathogens, but often the virus cannot be cultivated 

under laboratory conditions. This limitation constitutes a substantial 

barrier to viral discovery (58). Metagenomics can be defined as the 

sequenced-based analysis of the whole collection of viral genomes 

isolated directly from a sample (Fig. 5) (59). This overcomes the 

limitation because viral cultivation or prior knowledge of which 

viruses are present in the sample is not required. However, the method 

of sample isolation and library preparation can affect the types of 

virus retrieved (58). One of the main challenges in analysing a 

metagenomic sample is phylogenetic classification of the raw 

sequence reads into groups representing the same or similar species. 

Metagenomics data analysis can be broadly divided into three major 

approaches based on homology, abundance and de novo assembly. 

Homology-based approaches classify reads using sequence alignment 

tools such as BLAST (Basic Local Alignment Search Tool) (60) and 

BLAT (BLAST-like alignment tool) (61) to align reads directly to 

reference databases. Although BLAST was not designed for 

metagenomic sequence classification, tools such as MEGAN (62) and 

PhymmBL (63) integrate BLAST with Markov models for speed and 

lowest common ancestor algorithms to assign taxonomic 

identifications to individual reads and produce summaries at various 

taxonomic levels. 

Abundance-based approaches are much faster, and can be used to 

obtain summary level characterisation of the organisms in a given 

sample. They work by creating a database of known sequences that 

are representative of particular viruses, for example in the form of 

clade-specific, short sequences (i.e. k-mers). The aim of these methods 
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is to produce an overview of the viral content of the sample by 

taxonomically identifying and labelling each read using tools such as 

MetaPhlAn (64) and Kraken (65). Kraken can build a k-mer-based 

database of all known viral genomes by associating unique k-mers 

with individual viral species and higher taxonomic units. This enables 

it to process a metagenomics dataset rapidly and identify the presence 

of viral species based on the occurrence of their unique k-mers in the 

reads. Such tools typically utilise dedicated k-mer counting tools such 

as Jellyfish (66) and KAnalyze (67). Tools such as Krona (68) can 

then be used to visualise the presence and abundance of organisms in 

the sample. 

De novo assembly-based approaches can provide a better idea of the 

breadth and depth of the genome sequences present in a metagenomic 

dataset. They are typically run as part of an analysis pipeline, such as 

MetAMOS (69) and VirusFinder2 (70), that also integrates 

scaffolding and subsequent searching against sequence databases. The 

resulting scaffolds can then be searched against known sequence 

databases using similarity-based methods such as BLAST and BLAT 

to identify the organisms present in the sample or find the most 

closely related species. For example, the use of HTS metagenomics in 

the first identification of the Schmallenberg virus (71) demonstrates 

the power of these approaches. 

RNA-Seq 

The transcriptome is defined as the complete, quantified set of 

transcripts in a single cell or cell population at a specific 

developmental stage or under specific physiological conditions. 

Understanding the transcriptome is essential for interpreting the 

functional elements of a genome, for revealing the molecular 

constituents of cells and tissues, and for understanding the processes 

of development and disease. RNA-Seq, also called whole 

transcriptome shotgun sequencing, is a technology that uses the 

capabilities of HTS to reveal a snapshot of the type and quantities of 

RNA molecules expressed from a genome at a given moment in time 

(72). Compared to microarrays, the technology previously used for 
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transcriptomics, RNA-Seq offers increased specificity and sensitivity 

for the enhanced detection of gene transcripts, and can detect novel 

transcripts, gene fusions and gene variants. It is important to note that 

for RNA-Seq experiments replicates are needed to ensure the 

statistical significance of differences in gene expression (73). 

Examples of RNA-Seq applied to virology include characterising the 

response of bovine cells to Schmallenberg virus infection (74) and 

studying the transcriptomes of viral genomes themselves (75). 

RNA-Seq reads must be mapped to a reference genome. However, 

many reads will fail to map to a standard genome because they span 

exon junctions. Therefore, novel mapping and downstream analysis 

tools are needed to handle RNA-Seq data effectively. One of the most 

commonly used pipelines involves TopHat (76) combined with 

Cufflinks (77, 78). TopHat aligns reads to the reference genome and 

detects splice junctions ab initio by analysing all fully mapped reads 

to identify nearby exon splice junctions, and then mapping the reads 

against these junctions. Cufflinks then uses the mapping data to 

assemble transcripts, estimate their abundances, and test for 

differential expression and regulation in RNA-Seq samples. However, 

numerous alternatives to TopHat and Cufflinks are available, such as 

STAR (79) and DESeq (80), respectively. If a reference genome is not 

available, then it is possible to reconstruct a transcriptome de novo 

from RNA-Seq data using tools such as Trinity (81) and 

SOAPdenovo-Trans (82). Downstream analysis tools such as DAVID 

(83) can then be used for functional annotation, pathway analysis and 

gene regulation analysis. 

Discussion 

In this paper, the authors have provided a brief overview of the 

bioinformatics tools available for viral genomic analyses, particularly 

those that utilise HTS data. They have given exemplar tools and 

studies at each step, ranging from consensus sequencing and analyses 

of intra-host diversity to de novo assembly and metagenomics, as well 

as RNA-Seq. However, viral genomics is a broad field and there are 

areas that could not be covered, such as searching for endogenous 
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viral elements in mammalian genomes (84), detecting novel functional 

elements (85) and reconstructing transmission chains (86). Additional 

bioinformatics tools that should be mentioned include Galaxy (87), a 

user-friendly web-based platform for configuring and running many of 

the steps and tools described in this paper, and the Genome Analysis 

Toolkit (88), a software package developed for many different types 

of HTS data analysis, with a primary focus on human data. 

HTS technologies have revolutionised the field of viral genomics by 

enabling the rapid and cost-effective sequencing of viral genomes in 

large numbers, the assembly of novel viral genomes, the analysis of 

viral populations at unprecedented depth and detail, and the detection 

of viral agents in clinical samples. Bioinformatics is central to the 

exploitation of HTS, as software tools are needed to manage and 

analyse the large data sets that this technology produces. Furthermore, 

new HTS technologies are continually being developed to increase 

read length and improve quality, which again requires the 

development of appropriate bioinformatic tools. For example, the 

MinION (Oxford Nanopore Technologies) offers the potential to 

sequence entire viral genomes in a single read. Although still in its 

infancy, this improved technology offers enormous potential for all 

the areas of viral bioinformatics discussed in this paper. Furthermore, 

technology is likely to be ultra-portable in the future; therefore, one 

can envisage its direct use in the field during disease outbreaks to 

provide clinicians and veterinarians with rapid diagnoses. 
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BAM: binary alignment/map  

Ref. DBs: reference databases 

SAM: sequence alignment/map 

Fig. 1 

Flowchart of the major analytical steps in various types of high-

throughput sequencing analysis 

The major steps involved in consensus sequencing, de novo assembly 

and metagenomics are illustrated (explained in detail in the text) 
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Fig. 2 

Bioinformatics tools for viral high-throughput sequencing data 

Examples of the available bioinformatics tools, categorised by the 

relevant HTS analysis step 

 

Fig. 3 

Schematic diagram of viral population analysis 

The various stages involved in applying HTS technologies to viral 

populations. Reads are first mapped to a reference sequence (circles, 

reads containing variants/mutations compared with the reference). 

Variant frequencies are then calculated (shading represents different 

frequencies). Subsequent analyses include viral haplotype 

reconstruction and tracking particular variants of interest through 

related samples 

Fig. 4 

Overview of tools for analysing recombination 

The plethora of recombination tools is classified according to the 

method and year of publication. The font size is proportional to the 

number of citations in Google Scholar 

 

 

Ref. DBs: reference databases 

Fig. 5 

Schematic diagram of HTS metagenomic analysis 

The main stages of a typical HTS metagenomic analysis are 

illustrated. Shading is used to represent reads originating from 

different species. Reads can be analysed via abundance-based 

approaches to determine the relative frequency of each taxa or can be 

assembled de novo to form contigs. Contigs can be scaffolded together 

using a related reference genome or paired-end reads, which can also 

be used for gap filling to yield a draft genome. Both contigs and 

original reads can be ‘BLASTed’ against reference databases for 

taxonomic classification 


