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Abstract
We report on two tools which extend Java with support for static
typechecking of communication protocols. Our Mungo tool extends
Java with typestate definitions, which allow classes to be associ-
ated with state machines defining permitted sequences of method
calls. A complementary tool, StMungo, takes a communication pro-
tocol specified in the Scribble protocol description language, and
generates a typestate specification for each endpoint, capturing the
permitted sequences of messages along that channel. Endpoint im-
plementations can be validated by Mungo against their typestate
definitions and then compiled as usual with javac. We formalise
Mungo’s typestate inference system and demonstrate the Scribble,
Mungo and StMungo toolchain via a typechecked SMTP client that
can communicate with a real-world SMTP server.

1. Introduction
In this paper we present two tools which extend the Java develop-
ment process with support for static typechecking of communication
protocols. Mungo1 extends Java with typestate definitions, which
associate classes with state machines defining permitted sequences
of method calls [42]. To associate a typestate definition with a class,
the programmer adds a @Typestate annotation to the class telling
Mungo where to find the typestate definition file. Mungo will then
ensure that instances of the class are used in a manner consistent
with the declared typestate.

StMungo (Scribble-to-Mungo) uses this typestate feature to con-
nect Java to the broader setting of communication protocols specified
in the Scribble protocol language [40]. Given a Scribble protocol pro-
jected to a particular endpoint (a so-called local protocol), StMungo
will generate a typestate specification capturing the sequences of
sends and receives permitted along that endpoint. Each endpoint
implementation can be validated separately by Mungo against its
typestate definition and then compiled as usual with javac.

The separate typechecking of each endpoint is integral to our
approach, and is justified by the theory of multiparty session
types [25], the formal foundation of Scribble. Multiparty session
types provide an important safety guarantee: once each endpoint
implementation is known to conform to its local protocol, the

1 Saint Mungo is the founder and patron saint of the city of Glasgow.
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various implementations can be composed into a system free of
communication errors.

Our work contributes to a line of research applying session types
to real-world programming languages [9, 15–17, 22, 28, 32, 33,
35, 38]. In particular, our work builds on that of Gay et al. [23],
which first connected session types to the object-oriented notion of
typestate. They observed that the valid sequences of messages for a
given endpoint could be captured by a typestate definition for a class,
allowing the channel endpoint to be modelled as an object. While an
important idea, this earlier work lacked a practical implementation
and relied on typestate declaration on parameters and return types.

Mungo improves on this earlier work by employing an inference
system, removing the need for typestate declarations on parameters
and return types. The Mungo/StMungo toolchain offers other prac-
tical advances over previous efforts to combine session types with
objects. For example, SJ [28] only supports binary session types,
whereas StMungo generates Mungo specifications from multiparty
session types. Furthermore, Mungo permits non-local use of objects
with typestates. Using the @Typestate annotation means we avoid
any need for language extensions.

Tracking object typestates requires a mechanism for managing
object aliasing. For Mungo, we require objects which declare a
typestate to be used linearly. While this is probably too restrictive
for general-purpose programming, it is a standard technique for
enabling typed communication along channels; most session type
systems impose similar constraints on channel usage. Objects which
lack typestate definitions can be used unrestrictedly alongside linear
objects. In future work (§ 8) we will investigate more flexible alias
control mechanisms, drawing on the substantial existing literature.

1.1 Contributions
The main contributions of the paper are as follows:

Mungo. We describe the Mungo typestate checker for Java.
Mungo currently supports a subset of Java; support for the full
language is discussed in § 8.

StMungo. We describe StMungo (§ 3), which translates Scribble
local protocols into Mungo typestate specifications. StMungo also
generates Java method stubs for each endpoint.

SMTP case study. A substantial example, a statically type-
checked SMTP client (§ 4), illustrates the end-to-end toolchain
provided by Scribble, StMungo and Mungo.

Typestate inference system. We formalise the essential features
of Mungo as a core object-oriented calculus (§ 5). We define a
typestate inference system for that language and prove its type-
safety (§ 6).

2. Mungo
Mungo2 extends Java with an optional typestate system. The tool
is implemented in Java using the JastAdd framework [24], a meta-

2 The tool is maintained by the first author and can be downloaded from our
web page [1].
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compiler based on reference attribute grammars. Source files are
typechecked in two phases: first according to the regular Java type
system, and then according to our typestate extension. The source
files can then be compiled using javac and executed in the standard
Java 1.8 runtime environment.

The main extension provided by Mungo is the ability to attach
a typestate definition to a Java class. A typestate defines an object
protocol, in the form of a state machine. Each state offers a set of
methods, which must be a subset of the methods defined by the class;
each method specifies a transition to a successor state. Typestate
definitions are provided in separate files, using the Java-like syntax
shown in Example 2.1 below. A typestate definition is attached to
a class using the annotation @Typestate("ProtocolName"), where
"ProtocolName" names the typestate definition file. The typestate
inference algorithm, presented in § 6 below, constructs the sequences
of methods called on all objects associated with a typestate, and then
checks if the inferred typestate is a subtype of the object’s declared
typestate. An object without a declared typestate is typechecked as
normal.

Some Java features are not yet supported. Some we anticipate to
be relatively straightforward extensions (synchronised statements,
the conditional operator ?:, inner and anonymous classes, and
static initialisers). Generics, inheritance and exceptions are non-
trivial and are discussed in future work (§ 8). Currently, generics
are not supported; inheritance is supported for classes without
typestate definitions; and exceptions are supported syntactically but
are typechecked under the (unsound) assumption that no exceptions
are thrown. (A try-catch statement is typechecked by typechecking
the try body; if an exception is thrown a typestate violation may
result.)

Example 2.1. We introduce Mungo through the example of a stack
data structure which follows a typestate specification. Given the
following enumerated type:

enum Check { EMPTY, NONEMPTY }

then one possible typestate protocol for a stack is as follows:

1 typestate StackProtocol {
2 Empty = {void push(int): NonEmpty,
3 void deallocate(): end}
4 NonEmpty = {void push(int): NonEmpty ,
5 int pop(): Unknown}
6 Unknown = {void push(int): NonEmpty,
7 Check isEmpty():
8 <EMPTY: Empty, NONEMPTY: NonEmpty >}}

This definition specifies that a stack is initially Empty. The
Empty state declares two methods: push(int) pushes an integer
onto the stack and proceeds to the NonEmpty state; deallocate()
frees any resources used by the stack and terminates its usage. The
deallocate() method is not available in any other state, requiring a
client to empty the stack before it is done using it. In the NonEmpty
state a client can either push() an element onto the stack and remain
in the same state, or pop() an element from the stack and transition
to Unknown.

Unlike push(), pop() must leave the stack in the Unknown state
because the number of elements on the stack are not tracked by
the protocol. From the Unknown state, one can either push() and
proceed to NonEmpty, or call isEmpty() to explicitly test whether
the stack is empty. Calling isEmpty() returns a member of the
enumeration Check defined earlier. This idiom, based on Java
enumerations, is the mechanism for communicating a choice made
by the callee synchronously back to the client, and is explained in
more detail below. Here, a stack implementation can choose between
returning EMPTY and transitioning to Empty, or returning NONEMPTY
and transitioning to NonEmpty.

We can now define a stack implementation Stack that conforms
to the StackProtocol specification, using an integer array to store
the elements. The annotation @Typestate("StackProtocol") is
used to associate the typestate definition with the class:

1 @Typestate("StackProtocol")
2 class Stack {
3 private int[] stack; private int head;
4 Stack() { stack = new int[MAX]; head = 0; }
5 void push(int d) { stack[head++] = d; }
6 int pop() { return stack[head--]; }
7 Check isEmpty() {
8 if(head == 0) return Check.EMPTY;
9 return Check.NONEMPTY);
10 void deallocate() {} }

Finally, having implemented StackProtocol, we can define a
stack client that makes use of the Stack implementation, with
Mungo verifying that Stack instances are used correctly.

1 class StackUser {
2 Stack pushN(Stack s, int n)
3 { do { s.push(n--); } while(n>0); return s; }
4 Stack popAll(Stack s)
5 { loop : do {
6 System.out.println(s.pop());
7 switch(s.isEmpty()) {
8 case EMPTY: break loop;
9 case NONEMPTY: continue loop;
10 } while(true);
11 return s; }
12 public static void main(String[] args)
13 { StackUser su = new StackUser();
14 Stack s = new Stack(); Stack s2;
15 s = su.pushN(s,16); s2 = su.popAll(s);
16 s = su.pushN(s2,64); s = su.popAll(s);
17 s.deallocate(); } }

For illustrative purposes, the client defines two helper methods:
pushN(Stack s, int n), for any n > 0, pushes the integers n, . . . , 1
onto the stack s, and popAll(Stack s) pops all the elements of s.
We now discuss some details of the programming model, drawing
on this example where appropriate.

Local variables, parameters, and return values. The main()
method above creates a single Stack instance, stores it in a local
variable s, and then passes it to various invocations of pushN and
popAll, from which it is also returned as a result. We also make use
of the additional local variable s2. When returned from a method, the
stack has a potentially different typestate than it did as an argument.
No explicit typestate definitions are required for the parameter or
return types of pushN and popAll, since Mungo can infer them.
An alternative to this “continuation-passing” style, using fields, is
discussed below.

Recursion and internal choice. Method pushN() illustrates the
consumption of a recursive typestate offering a choice. The loop
of the form do-while(exp) requires s to initially be either Empty or
NonEmpty; at each iteration, the client decides (in the terminology of
session types, it makes an internal choice) whether to push another
element or exit, leaving the stack in the NonEmpty state. This is
compatible with the recursive structure of the NonEmpty state, which
permits an unbounded number of push() operations, looping back
to NonEmpty each time.

Recursion and external choice. Method popAll(Stack s) also
illustrates the consumption of a recursive typestate, but here the
stack rather than the client makes the choice. (In session type
terminology, the client offers an external choice.) This takes the
form of a labelled do-while(true) in conjunction with a switch.
The switch statement inspects the Check enumeration returned by
isEmpty; in the NONEMPTY case, the loop continues, and in the EMPTY
case the loop terminates. Due to their particular control flow, loops
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of the form label: do { switch { block } } while(true) are
a suitable pattern for consuming a recursive typestate when the
condition on the recursion is an external choice (i.e. based on an
enumeration label).

Linear objects. Mungo ensures linear usage of objects that
follow a typestate protocol; aliasing on objects allows for different
method calls on an object that might lead to an inconsistent typestate.
Notice that in line 15 of the StackUser example:

s = su.pushN(s,16); s2 = su.popAll(s);

the return value of popAll() is assigned to s2. Now, suppose line 16
were replaced with the following:

s = su.pushN(s,64); s = su.popAll(s);

In this case Mungo would report a linearity error on argument s
in su.pushN(s, 64) informing the programmer that variable s is
used uninitialised, because the usage of variable s in line 15 as an
argument consumed its linear value.

Inferring typestate for fields. Using fields to store objects can
lead to a more idiomatic object-oriented style than explicitly passing
values between methods. To show how this works, we define a
second client, StackUser2, that stores a Stack as a field.

1 class StackUser2 {
2 private Stack s;
3 StackUser2() { s = new Stack(); }
4 boolean pushN(int n)
5 { do{ s.push(n--); }while(n>0); return true; }
6 void popAll()
7 { loop : do {
8 System.out.println(s.pop());
9 switch(s.isEmpty()) {
10 case EMPTY: break loop;
11 case NONEMPTY: continue loop;
12 } while(true); }
13 void finish() { s.deallocate(); }
14 public static void main(String[] args)
15 { StackUser2 su = new StackUser2();
16 if(su.pushN(15)||su.pushN(32))
17 su.pushN(32);
18 su.popAll(); su.finish(); } }

To track the typestate of a field we need to know the possible
sequences in which methods of its containing class may be called.
That, in turn, requires having a typestate for the containing class.
In this case, to track the typestate of the field s, Mungo requires us
to provide a typestate for StackUser2. This state machine will then
drive typestate checking for those fields of StackUser2 which have
their own typestate definitions. For example we could define the
following StackUserProtocol for StackUser2:

1 typestate StackUserProtocol {
2 Init = { boolean pushN(int): Cons,
3 void finish() : end}
4 Cons = { boolean pushN(int): Cons,
5 void popAll(): Init} }

Typechecking the field s of StackUser2 field follows the possible
sequences of method calls specified by StackUserProtocol, and
also takes into account the constructor body of StackUser2. Then
Mungo can guarantee that if a StackUser2 instance is used according
to StackUserProtocol then the Stack field of the object is also used
according to StackProtocol.

Short-circuit boolean expressions. Line 16 above illustrates a
final technical detail of typestate inference. The inference algorithm
takes into account the fact that logical disjunction short-circuits
if the first disjunct evaluates to true. Mungo will ensure that the
typestate of su is consistent with there either being one, two or three
successive invocations of pushN().

3. StMungo: Scribble-to-Mungo
The integration of session types and typestate, defined by Gay
et al. [23], consists of a formal translation of session types for
communication channels into typestate specifications for channel
objects. The main idea is that a channel object has methods for
sending and receiving messages and the typestate specification
defines the order in which these methods can be called; therefore
it is a specification of the permitted sequences of messages, i.e. a
channel protocol.

We extend this translation from binary to multiparty session types
[25] and implement it as the StMungo (Scribble to Mungo) tool3,
which translates Scribble [40, 45] local protocols into typestate
specifications and skeleton socket-based implementation code. The
resulting code is typechecked using Mungo. A Scribble local
protocol describes the communication between one role and all
the other participants in a multiparty scenario, including the way in
which messages sent to different participants are interleaved. This
interleaving is not captured by binary session types and by tools
based on them, like SJ [28]. StMungo is based on the principle
that each role in the multiparty communication can be abstracted
as a Java class following the typestate corresponding to the role’s
local protocol. The typestate specification generated from StMungo
together with the Mungo typechecker can guide the user in the
design and implementation of distributed multiparty communication-
based programs with guarantees on communication safety and
soundness. StMungo is the first tool to provide a practical embedding
of Scribble multiparty protocols into object-oriented languages with
typestate.

We illustrate StMungo on a multiparty protocol that models
the process of booking flights through a university travel agent.
The full details of this example are given in App. B. There are
three participants involved: Researcher (abbreviated R), who intends
to travel; Agent (A), who is able to make travel reservations; and
Finance (F), who approves expenditure from the budget. After the
request, quote and check messages requesting authorisation for
a trip, Finance can choose to approve or refuse the request. The
global protocol is defined as follows.

1 global protocol BuyTicket(role R, role A, role F){
2 request(Travel) from R to A;
3 quote(Price) from A to R;
4 check(Price) from R to F;
5 choice at F { approve(Code) from F to R,A;
6 ticket(String) from A to R;
7 invoice(Code) from A to F;
8 payment(Price) from F to A; }
9 or { refuse(String) from F to R,A; }}

The Scribble tool is used to check the above protocol definition for
well-formedness and to derive a local version of the protocol for
each role, according to the multiparty session types theory [25]. This
is known as endpoint projection. Here we show the local protocol
for Researcher, which describes only the messages involving that
role. The self keyword indicates that R is the local endpoint.

1 local protocol BuyTicket_R(self R, role A, role F){
2 request(Travel) to A;
3 quote(Price) from A; check(Price) to F;
4 choice at F { approve(Code) from F;
5 ticket(String) from R; }
6 or { refuse(String) from F; }}

Notice that the exchange of invoice and payment between Agent
and Finance is not included. Similarly, the local projection for Agent
omits the check message and the local projection for Finance omits

3 The tool is developed and maintained by the second author and can be
downloaded from our web page [1].
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the request, quote and ticket messages. StMungo converts the
BuyTicket_R local protocol into the RProtocol typestate protocol:

1 typestate RProtocol {
2 State0={void send_requestTravelToA(Travel):State1}
3 State1={Price receive_quotePriceFromA():State2}
4 State2={ void send_checkPriceToF(Price):State3}
5 State3={Choice1 receive_Choice1LabelFromF():
6 <APPROVE: State4, REFUSE: State6> }
7 State4={Code receive_approveCodeFromF():State5}
8 State5={String receive_ticketStringFromA():end}
9 State6={String receive_refuseTravelFromF():end}}

StMungo generates an API for this role, class RRole given in App. B,
which provides an implementation of RProtocol. When instantiated,
it connects to the other role objects in the session (ARole and FRole).
The method calls, describing the messages exchanged with the other
roles, follow the interleaving specified by the RProtocol typestate.
Alternatively, the developer may choose to ignore this API (and the
Mungo socket library that it depends on), and use only the generated
typestate protocols to develop his/her own implementation. He/she
also has the ability to further refine the generated state machine,
e.g., give appropriate names to states, or use anonymous states to
have a coarser state refinement.

4. Case Study: Typechecking SMTP
In order to show the practicality and robustness of our StMungo
and Mungo toolchain, we have developed a substantial case study
in which we statically typecheck an SMTP client. We use this client
to communicate with the gmail server. The full source code of the
SMTP client can be found in [1].

SMTP (Simple Mail Transfer Protocol) is an internet standard
electronic mail transfer protocol, which typically runs over a TCP
(Transmission Control Protocol) connection. We consider the ver-
sion defined in RFC 5321 [41]. An SMTP interaction consists of an
exchange of text-based commands between the client and the server.
For example, the client sends the EHLO command to identify itself
and open the connection with the server. The commands MAIL FROM
: <address> and RCPT TO : <address> specify the e-mail address
of the sender and the receiver of the e-mail, respectively. The DATA
command allows the client to specify the text of the e-mail. The
QUIT command is used to terminate the session and close the con-
nection. The responses from the server have the following format:
three digits followed by an optional dash “-”, such as 250-, and then
some text, like OK. The server might reply to EHLO with 250 <text>
or to MAIL FROM or RCPT TO with 250 OK.

To typecheck the SMTP protocol using StMungo and Mungo, we
first represent the text-based commands as messages in a Scribble
global protocol, based on Hu’s work [27].

1 global protocol SMTP(role S, role C) {
2 // Global interaction between server and client.
3 _220(String) from S to C;
4 rec X1 {
5 choice at S { _250dash(String) from S to C;
6 continue X1; }
7 or { 250(String) from S to C; ... }
8 ... } }

Then, we use the Scribble tool to validate and project the above
global protocol into local protocols, one for each role. We focus
only on the client side and describe in the following the SMTP_C
local protocol. This fragment of code of the SMTP describes a
loop (rec X1), in which the server S performs a choice between the
messages _250DASH and _250. Next, other loops follow (rec Z1 and
rec Z3), where in the second one the client C chooses among the
messages SUBJECT, to send the subject, DATALINE, to send a line of
text, or ATAD to terminate the e-mail by sending a dot.

1 local protocol SMTP_C(role S, self C) {
2 _220(String) from S; ...
3 rec X1 {
4 choice at S {
5 _250dash(String) from S; continue X1; }
6 or {
7 _250(String) from S; ...
8 rec Z1 {
9 ... data(String) to S; ...
10 rec Z3 {
11 choice at C { subject(String) to S;
12 continue Z3; }
13 or { dataline(String) to S;
14 continue Z3; }
15 or { atad(String) to S;
16 _250(String) from S;
17 continue Z1; }
18 } } } ... } }

StMungo translates the local protocol (SMTP_C) into a typestate speci-
fication (CProtocol). In addition, it generates a skeletal implementa-
tion based on sockets, although other implementations are possible.
Every interaction in the local protocol becomes a method call in
the typestate specification, as we will see shortly. State definitions
group methods into choices and impose sequencing.

Running the StMungo tool on SMTP_C produces the files
CProtocol.protocol, CRole.java and CMain.java:

1. CProtocol.protocol, captures the interactions local to the
SMTP_C role as a typestate specification.

2. CRole.java, is a class that implements CProtocol by commu-
nication over Java sockets. This is an API that can be used to
implement the SMTP client endpoint.

3. CMain.java, is a skeletal implementation of the SMTP client
endpoint. This runs as a Java process and provides a main()
method which uses CRole to communicate with the other parties
in the session, in this case the SMTP server.

The CProtocol generated by StMungo is defined in the following.

1 typestate CProtocol {
2 State0={String receive_220StringFromS():State1}
3 ...
4 State3={Choice1 receive_Choice1LabelFromS():
5 < _250DASH: State4, _250: State5 >}
6 State4=
7 {String receive_250dashStringFromS():State3}
8 State5={String receive_250StringFromS():State6}
9 ...
10 State27={void send_dataStringToS(String):State28}
11 ...
12 State29={void send_SUBJECTToS():State30,
13 void send_DATALINEToS(): State31,
14 void send_ATADToS():State32} ...}

The receive and send messages in the SMTP_C local protocol are inter-
preted as typestate methods in the CProtocol typestate specification.
For example, the message _220(String) received from S given in
line 2 in SMTP_C becomes a method with signature:

String receive_220StringFromS()

given in line 2 in CProtocol.
Similarly, the message data(String) sent to S and given in line

9 of SMTP_C becomes a method with the following signature:
void send_dataStringToS(String)

given in line 10 in CProtocol.
Let us now comment on choice. The external choice made at

role S different from self is given in lines 4-18 of SMTP_C. For every
external choice in the local protocol there is an enumerated type in
the typestate, such as the following:

enum Choice1 { _250DASH, _250; }
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The values of Choice1 are determined by the first interaction of
every branch in the choice. The external choice itself is translated as
a receive method returning the enumerated type Choice1 and given
in lines 4-5 of CProtocol:

Choice1 receive_Choice1LabelFromS():
<_250DASH: State4, _250: State5>

After choosing one of the branches, _250DASH or _250, the pay-
load of type String is received via another method call, fol-
lowing the choice: receive_250dashStringFromS() in line 7 and
receive_250StringFromS() in line 8, respectively for the two avail-
able choices.

The internal choice made at self, namely role C (lines 11-17
of SMTP_C), is translated into a set of send methods, one for each
branch of the choice (lines 12-14 of CProtocol). When running the
program, only one of these methods will be called, thus performing
a single message selection corresponding to it.
CRole implements all the methods in CProtocol. In this imple-

mentation, since communication occurs on Java sockets, we declare
and create a new socket to connect to the gmail server. This is given
in lines 2 and 4 in CRole, respectively.

1 @Typestate("CProtocol") class CRole {
2 private Socket socketS = null; ...
3 public CRole()
4 { socketS = new Socket("smtp.gmail.com", 587);...}
5 /* CProtocol method definitions */ }

We now describe the correspondence between the text-based
commands in SMTP and the method calls in Mungo. Consider
“SUBJECT: Hello World”, which is an atomic command starting
with the keyword SUBJECT and followed by the subject text. In
our framework we use an intermediate layer to split the above
command into two separate method calls, as shown in lines 7-9 in
CMain. The first, send_SUBJECTToS(), selects the command SUBJECT.
The second, send subjectStringToS("Hello World"), completes
and sends the message “SUBJECT: Hello World”. The intermediate
layer is also used when receiving a command from the server, by
splitting it into a choice and the corresponding text.

Finally, CMain.java contains the main method where the CRole
object is created and used to implement the client logic.

1 public static void main(String[] args) {
2 CRole currentC = new CRole();
3 ... _Z3:
4 do{ ...
5 switch(/*label to be sent*/) {
6 case /*SUBJECT*/:
7 currentC.send_SUBJECTToS();
8 String subject = // input subject;
9 currentC.send_subjectStringToS(/*subject*/);
10 continue _Z3;
11 case /*DATALINE*/:
12 case /*ATAD*/:
13 currentC.send_ATADToS();
14 currentC.send_atadStringToS(/*single dot*/);
15 String _250msg =
16 currentC.receive_250StringFromS();
17 continue _Z1; }
18 } while(true); }

Typically the programmer would flesh out the skeletal implementa-
tion with extra logic that, for example, gets relevant input from the
user or decides which choice to make when several are available, or
customise CMain by adding SSL connection code for authentication
with the gmail server. Mungo is able to statically check CMain, or
any code that uses a CRole object, to ensure that methods of the pro-
tocol are called in a valid sequence and that all possible responses
are handled. The programmer is not required to use the skeleton
implementation of CMain, or even the CRole API. It is possible to

D ::= class C : S {F̃; M̃} | enum E {̃l}

S ::= H̃ | µX.S | X
H ::= T m(T ) : S | E m(T ) : 〈S l〉l∈E

T ::= C | E | bool | void
F ::= T f
M ::= T m(T x) {e}
r ::= this | r. f | x
c ::= l | tt | ff | null | ∗
e ::= c | r | r.m(e) | r. f = e | e; e | r. f = new C

| λ : e | continue λ
| switch (e) {el}l∈E | if (e) e else e

Figure 1. Top-level syntax

write new code that uses the API, or to use the typestate specification
to guide the development of an alternative API, or to refactor the
typestate specification itself.

5. A Core Calculus for Mungo
In this section we define the syntax and operational semantics of a
core object-oriented calculus, based on [23] and used to formalise
Mungo. Note that we only formalise the inference system and not
the ability of Mungo to work with full Java, as this would require
formalising a large subset of Java.

Syntax. The syntax of the calculus is given in Fig. 1. We use
·̃ to denote a possibly empty set of elements that range over the
subject meta-variable. A program is a set of type declarations D̃,
each of which declares either a class or an enumerated type. A class
declaration defines a class named C with typestate specification S ,
fields F̃ and methods M̃. An enumeration declaration defines an
enumerated type named E with a non-empty set l̃ of enum values. For
simplicity, our language has no support for inheritance or interfaces.
We assume that a program has unique names for classes and
enumerations, and a class has unique names for fields and methods.
The formal treatment assumes as an implicit context a program
D̃, which can be accessed by the following functions: given that
class C : S {F̃; M̃} ∈ D̃ we define fields(C) = F̃,methods(C) =

M̃, typestate(C) = S ; and enums(E) = l̃ if enum E {̃l} ∈ D̃ A
typestate definition S specifies a state machine that has as actions
the methods of a class. A typestate definition is either an internal
choice H̃ of method signatures, or a recursive typestate µX.S , which
may contain the recursive typestate variable X. A method signature
H can have two forms, depending on whether the method transitions
to a state S , or it is an external choice E m(T ) : 〈l : S l〉l∈E with the
method signature defining the transition to one of the possible states
〈S l〉l∈E ; in the latter case the return type of the method must be E.
The empty or inactive typestate {} can also be written end. Well-
formedness conditions ensure that state µX.X is not well-formed
and that all state definitions are closed. A type is either the name
of a class or enumeration, void or bool. A field declaration is
a field name f associated with a type T . A method declaration
T m(T ′ x) {e} specifies a return type T , the name m of the method,
the type T ′ of the parameter x, and the expression e which comprises
the method body. A path is either the atomic path this denoting
the current object (receiver), the composite path r. f denoting the
field f of the object denoted by r, or a parameter x. At runtime
paths are resolved to heap locations (see runtime syntax below). A
constant is the special value null which is assignable to any class
type, a bool or void literal, or an enum value l. A constant or a
path is an expression. In the expression forms method call r.m(e),
field assignment r. f = e, and object creation r. f = new C, have the
target object of the invocation or assignment is restricted to a path
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o ::= C[ f̃ : o] | c r ::= root | r. f
e ::= . . . | e@r v ::= c | r
S ::= . . . | 〈S l〉l∈E s ::= T m(T ) | E m(T ) : l | l
E ::= [] | r.m(E) | r. f = E | E; e | switch (E) {el}l∈E

| E@r | if (E) e else e
` ::= r. f .new C | r.〈l〉 | r.T m T ′ | r. f = v | τ | if

Figure 2. Runtime syntax

r, rather than an arbitrary expression. The other expression forms
include sequential composition e; e′, switch expressions, if ...else
expression, labelled expressions λ : e, and continue expressions
which jump to the enclosing expression labelled by λ.

Configurations and runtime syntax. Fig. 2 extends the source
syntax with additional runtime constructs used by the operational
semantics. A configuration h, e is the pair of a heap h and runtime
expression e. The heap h is defined as an object C[ f̃ : o], where C
is the class of the object and f̃ : o are its fields; the contents o of
each field is either a constant c or another object. The “heap” is a
tree of objects, with neither cycles nor sharing, due to the linearity
of object references enforced by the type system (see § 6).

The expression e in a configuration h, e is a runtime expression
in which every (compile-time) path of the form this, r. f or x has
been replaced by a runtime path which refers to a heap value. A
runtime path r in a heap h is either the atomic path root denoting h
itself or the composite path r′. f denoting the field f of the object
denoted by r′, where r′ is also a path in h. Runtime expressions
also include the form e@r, which is an expression e which has been
tagged with @r to track the active receiver. A value v is either a
constant c or runtime path r. Every runtime expression is either a
value, or uniquely of the form E[e], where E is an evaluation context
(an expression with a hole). As usual, the notation E[e] denotes the
plugging of the hole in E with an expression e.

The operational semantics is annotated with labels ` that denote
the creation of a new object (r. f .newC), an enum value choice (r.〈l〉),
method call (r.T m T ′), assigning a field (r. f = v), the conditional
label (if), and the silent label (τ). The definition of states is extended
to the set of enum values 〈l : S l〉l∈E and we define action labels s for
labels: internal choice T m(T ), external choice E m(T ) : l, and for
enum values l.

Labelled reduction semantics. We define heap access and
update functions that are used by the reduction relation in Fig. 3:
h(root) = h; h(r. f ) = o and h{r. f 7→ o′} = h{r 7→ C[ f̃ : o, f : o′]} if
h(r) = C[ f̃ : o, f : o]. The root object is accessed via h(root). The
access of a field h(r. f ) is inductively defined on the access of h(r).
Similarly, we use the heap access function to update object fields
as in h{r. f 7→ o}. Fig. 3 defines the labelled reduction semantics;
hereafter by “expression” we shall mean runtime expression, and
by “path” runtime path, unless otherwise indicated. Rule R-Seq
discards the value v in a τ label and proceeds with the evaluation
of e. Rules R-True and R-False are the usual rules for the if ...else
expression and are annotated with label if. Rule R-New is labelled
with r. f .new C and overwrites the contents of the field r. f by a new
object C[ ˜f = init(T )] whose fields are all initialised to the value
init(T ), where T is the type of the field, defined as: init(C) = null;
init(E) = Einit; init(bool) = ff; and init(void) = ∗, where for every
enumerated type E we require there to be a distinguished element
Einit ∈ enums(E). The result of R-New is the void value ∗. There is
no allocation of a fresh location; instead the object is constructed at
an existing location r. f . There are two assignment rules, depending
on whether the value being assigned is a constant or an object path.
Both forms return the void value ∗. A constant c has no associated
typestate and may be used unrestrictedly; therefore the R-AsgnC rule
is labelled with τ and simply updates the heap to store c in r. f . A path

R-Seq
h, (v; e)

τ
−−−→ h, e

R-True
h, if (tt) e1 else e2

if
−−−→ h, e1

R-False
h, if (ff) e1 else e2

if
−−−→ h, e2

R-New
(fields(C) = T̃ f )

h, r. f = new C
r. f .new C
−−−→ h{r. f 7→ C[ ˜f : init(T )]}, ∗

R-AsgnC
h, r. f = c

τ
−−−→ h{r. f 7→ c}, ∗

R-Value
(v , l)

h, v@r
τ
−−−→ h, v

R-AsgnR
(h′ = h{r′ 7→ null})

h, r. f = r′
r. f =r′
−−−→ h′{r. f 7→ h(r′)}, ∗

R-Call
(h(r) = C[ f̃ : o] ∧ T m(T ′ x) {e} ∈ methods(C))

h, r.m(v)
r.T m T ′
−−−→ h, e{v/x}{r/this}@r

R-Switch
(l′ ∈ E)

h, switch (l′@r) {el}l∈E
r.〈l′〉
−−−→ h, el′

R-Label

h, λ : e
τ
−−−→ h, e{e/continue λ}

R-Ctx
h, e

`
−−−→ h′, e′

h,E[e]
`
−−−→ h′,E[e′]

Figure 3. Operational semantics

r′, on the other hand, refers to an object and must be used linearly.
Therefore the effect of the R-AsgnR rule is to relocate the object
from r′ to h.r, leaving null at its old location. The annotation label
for R-AsgnR is r. f = v. The R-Call rule is labelled with r.T m T ′ and
resolves the method m by first looking up the receiver r in the heap,
which must be an object C[ f̃ : o], and then selecting the method
m from the definition of C. Prior to executing the selected method,
we convert its body e, which is a source-level expression, into a
runtime expression by substituting the runtime path r for this and
also v for the formal parameter. In addition, the resulting runtime
expression is tagged with @r, recording the fact that r is the active
receiver. The active receiver tag @r on a value is removed using a τ
label when the value is fully evaluated and it is not an enum label,
as defined by rule R-Value. If the value returned by the method is
an enum label l′, then it must occur as the scrutinee of a switch
expression; rule R-Switch defines the reduction via action r.〈l′〉, of
the switch expression to the branch indicated by l′. The r is used
in the reduction label to indicate which object made the choice.
Rule R-Label is labelled with τ, and says that a labelled expression
λ : e discards the λ and substitutes a copy of the labelled expression
for every occurrence of continue λ that occurs in the loop body
e. Rule R-Ctx lifts these rules to an arbitrary expression using an
evaluation context. It is easy to show that the operational semantics
is deterministic.

Assume a heap consisting of an instance of class C, where given
fields(C) = T̃ f , each field of C is initialised with the corresponding
value init(T ). Execution can then be initiated using a top-level
expression that substitutes path this with path root.

6. Typestate Inference
In this section we formalise a typestate inference system and prove
its safety properties. The system presented here infers a typestate

6 2016/6/20



S-Start
∅ ` S 4sbt S ′

S 4sbt S ′
S-End

R ` end 4sbt end

S-Terminate
(S , S ′) ∈ R
R ` S 4sbt S ′

S-Method
R ` S 4sbt S ′

R ` T ′ m(T ) : S 4sbt T ′ m(T ) : S ′

S-Rec1
R ∪ {S , µX.S ′} ` S 4sbt S ′{µX.S ′/X}

R ` S 4sbt µX.S ′

S-Set
H̃ , ∅ ∀H ∈ H̃,∃H′ ∈ H̃′. R ` H 4sbt H′

R ` H̃ 4sbt H̃′

S-Enum
∀l ∈ E. R ` S l 4sbt S ′l

R ` E m(T ) : 〈S l〉l∈E 4sbt E m(T ) : 〈S ′l 〉l∈E

S-Class
S 4sbt S ′

C[S ] 4sbt C[S ′]

S-Bot

bot 4sbt U

S-Grnd
U ∈ {E, bool, void}

U 4sbt U

S-Empty

∅ 4sbt ∆

S-Delta
∆ 4sbt ∆′ U 4sbt U′

∆, r : U 4sbt ∆, r : U′

S-Lambda
∆ 4sbt ∆′

∆, λ : X 4sbt ∆′, λ : X

Figure 4. Subtyping relation (Symmetric rule S-Rec2 omitted)

specification for a class definition. The typestate imposes an order
on how the methods of the class should be called. To this end, the
system checks how each instance of the class statically behaves.
Finally, the inferred typestate is checked against the declared
typestate of the class. The inference system is at the basis of
the implementation of Mungo (§ 2). Proving the soundness of the
inference system requires to prove that the trace of the execution of
a well-typed program is included in the trace of the inferred type for
that program. A sound inference system should be able to guaranty
the progress property requiring that a program either reduces or is a
value. The syntax of the inferred types, ranged over by U, and the
typing context, ranged over by ∆, are defined below:

U ::= C[S ] | E | bool | void | bot
∆ ::= ∅ | ∆, r : U | ∆, λ : X

The inferred types U differ from top-level types T ; every class
type C is refined with a typestate specification S and there is a
distinguished bottom type bot. Typing context ∆ is a partial function
from runtime paths r to types U, and expression labels λ to recursive
type variables X. A type U which not a class type is often refer to
as constant type.

The inference system uses of subtyping relation 4sbt and binary
relation join(·, ·).

Definition 6.1 (4sbt, =sbt, join). The following relations are defined
on typestates, inferred types and typing contexts.

• The subtyping relation 4sbt is defined by the rules in Fig. 4.
• The equivalence relation is defined as =sbt = 4sbt ∩ 4sbt

−1.
• The join relation join(·, ·) is defined by the rules in Fig. 5.

The subtyping on typestates is essentially a simulation relation
and is given in an algorithmic style. It coinductively constructs
a set R of pairs of typestates using rules S-Rec1 and S-Rec2. The
algorithm terminates either when end matches end (rule S-End) or
when a pair of typestates has been revisited (rule S-Terminate). Rule
S-Method checks for prefix matching. Rule S-Set requires covariance
on subtyping with the empty set being treated as a special case. Rule
S-Enum matches the external choice prefix. It requires subtyping on

join(H, {H′} ∪ H̃) =
T m(T ′) : join(S , S ′) ∪ H̃

if H = T m(T ′) : S and H′ = T m(T ′) : S ′

E m(T ) : 〈l : join(S l, S ′l )〉l∈E ∪ H̃
if H = E m(T ) : 〈S l〉l∈Eand H′ = E m(T ) : 〈S ′l 〉l∈E

{H,H′} ∪ H̃ otherwise

join(H̃ ∪ {H}, H̃′) = join(H̃, join(H, H̃′))
join(end, end) = end

join(µX.S 1, S 2) = join(S 1{µX.S 1/X}, S 2)
join(C[S ],C[S ′]) = C[join(S , S ′)]

join(U, bot) = join(bot,U) = U
join(U,U) = U U ∈ {E, bool, void}
join(∆,∆′) = {r : C[join(S , S ′)] | r : C[S ] ∈ ∆,

r : C[S ′] ∈ ∆′} ∪ ∆\∆′ ∪ ∆′\∆

Figure 5. Join relation (Symmetric recursion rule omitted)

typestates for every value of the enumerated type. The subtyping
relation generalises to inferred types and typing contexts. It is easy
to show that 4sbt is a preorder.

The most interesting case of join on typestates is the join of
method signatures. For the methods in common, the continuation
typestates are joined. A disjoint union of the rest of the methods is
performed. Join on recursive typestates is done up to unfolding. The
relation generalises to inferred types and typing contexts. Finally,
we define a transition relation on typestates as follows.

Definition 6.2 (Transition on typestates). Transition relation S
s
−−−→

S ′ is defined as:
T m(T ) : S

T m(T )
−−−→ S

l′ ∈ enums(E)

E m(T ) : 〈S l〉l∈E
E m(T ):l′
−−−→ S l′

H ∈ H̃ H
s
−−−→ S

H̃
s
−−−→ S

S {µX.S /X}
s
−−−→ S ′

µX.S
s
−−−→ S ′

l′ ∈ enums(E)

〈S l〉l∈E
l′
−−−→ S l′

The first two rules state that a method prefixed typestate reduces to
its continuation under a label denoting the prefix method signature
itself. The next two rules state that reduction can occur in a set of
typestates and under recursion, respectively. The last rule defines a
reduction on a runtime typestate, as defined in Fig. 2. It states that a
branching typestate reduces to one of its components by using the
corresponding enumerated value.

6.1 Typestate inference rules
Before introducing the typestate inference rules, we define the typing
judgements:
∆ ` e : U a ∆′ ∆ ` C[S ] ` class C : S {F̃; M̃} ` D̃
The first one is the typing judgement for expressions. The judgement
is read from right to left. It takes as input the typing context ∆′ and
the expression e, and algorithmically computes the type U. The
effects of the expression on ∆′ are then captured in ∆. However, it is
interesting to notice that the judgement can also be read from left to
right in a type system fashion, where the expression “consumes” ∆
in order to produce ∆′. The second judgement infers the typestates of
the fields of a class when the class is used according to its declared
typestate. The last two typing judgements state the well-formedness
of classes and, respectively, programs.

The typestate inference rules for expressions are given in Fig. 6.
We illustrate the most important rules using examples. The full
typestate derivation of the example code can be found in App. C.
The type inference is syntax-driven, meaning that at any point of the
derivation there is only one rule that can be applied. Rules Void, Bool,
Enum and Null type the constants with their corresponding types
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Void

∆ ` ∗ : void a ∆

Bool

∆ ` tt, ff : bool a ∆

Enum
l ∈ enums(E)
∆ ` l : E a ∆

Null
class C : S {F̃; M̃} ∈ D̃

∆ ` null : C[end] a ∆

Weaken
∆ ` e : U a ∆′ r < dom(∆′)

∆ ` e : U a ∆′, r : C[end]

Strengthen
∆, r : C[end] ` e : U a ∆′

∆ ` e : U a ∆′

PathC
U , C[S ]

∆, r : U ` r : U a ∆, r : U

PathR
r , this

∆, r : C[S ] ` r : C[S ] a ∆, r : C[end]

Equiv
∆ ` e : U a ∆′ ∆ =sbt ∆′′

∆′′ ` e : U a ∆′

AsgnC
U , C[S ]

∆ ` e : U a ∆′, r : U

∆ ` r = e : void a ∆′, r : U

AsgnR
r , this

∆ ` e : C[S ] a ∆′, r : C[end]
∆ ` r = e : void a ∆′, r : C[S ]

New
r , this S 4sbt typestate(C)
∀r. f : C′[S ′] ∈ ∆ =⇒ S ′ = end

∆, r : C[end] ` r = new C : void a ∆, r : C[S ]

Seq
∆ ` e1 : U′ a ∆′′

∆′′ ` e2 : U a ∆′

U′ , C[S ] U′ , bot

∆ ` e1; e2 : U a ∆′

Call
T m(T ′ x) {e′} ∈ methods(C) S ′ =sbt S

∆′′, r : C[S ′], x : U′ ` e′{r/this} : U a ∆′, r : C[S ], x : initT(T ′)
∆ ` e : U′ a ∆′′, r : C[{T m(T ′) : S }]

∆ ` r.m(e) : U a ∆′, r : C[S ]

Switch
∀l ∈ E. ∆l, r : C[S l] ` el : Ul a ∆′

∆ ` r.m(e) : E a ∆′′ ∆′′ = join({∆l}l∈E)
∆ ` switch (r.m(e)) {el}l∈E : join({Ul}l∈E) a ∆′

If
∆1 ` e1 : U1 a ∆′ ∆2 ` e2 : U2 a ∆′

∆′′ = join(∆1,∆2) ∆ ` e : bool a ∆′′

∆ ` if (e) e1 else e2 : join(U1,U2) a ∆′

LExpr
∆′′ ` e : U a ∆′, λ : X X fresh

∆ = {r : C[µX.S ] | r : C[S ] ∈ ∆′′} ∪
{r : U′ | r : U′ ∈ ∆′′ and U′ , C′[S ′]}

∆ ` λ : e : U a ∆′

Continue
∆ = {r : C[X] | r : C[S ] ∈ ∆′} ∪
{r : U | r : U ∈ ∆′ and U , C′[S ′]}

∆ ` continue λ : bot a ∆′, λ : X

Figure 6. Typestate inference rules for expressions

under any typing context without producing any effect on it, namely
the left and right typing contexts are the same. Rules Strengthen
and Weaken allow arbitrary removal and addition, respectively, of
inactive typestate assumptions.

Typestate Linearity. In the typestate inference system we adopt
linearity in order to forbid aliasing. We use the following example to
explain rules Seq, PathR, PathC, AsgnR, AsgnC, and New that require
treatment of linearity. Consider the following code that uses the
implementation of class Stack in section § 1:

s = new Stack; k = s (1)
The code expression matches rule Seq. We assume ∆0 = s :
Stack[end], k : Stack[S ] as an input typing context and S 4sbt
StackProtocol. Rule Seq requires an inference for the second
expression before the first, because the output typing context of the
second expression is the input typing context of the first expression.
In order to type the second expression by AsgnR we need to infer a
typestate for s. To respect linearity we take ∆1 = s : Stack[end], k :
Stack[end] as input. The derivation is as:

PathR ∆2 = s : Stack[S ], k : Stack[end] ` s : Stack[S ] a ∆1

∆2 ` k = s : void a ∆0 = s : Stack[end], k : Stack[S ]
AsgnR

The output typing context for PathR is ∆2 = s : Stack[S ], k :
Stack[end], meaning that k has an inactive typestate before assign-
ment. Rule PathR on its own “guesses” a type for a path expression.
However, the combination of PathR and AsgnR is the key to this
inference since it enforces a match on the type of s in the output
typing context ∆2 and the type of k in the input typing context ∆0.
For the first expression in (1) we use rule New. By assumption we
satisfy its premise; we have S 4sbt StackProtocol, meaning path s
is used according to the StackProtocol typestate (this is shown in
∆2). Rule New infers a type void for the first expression. Since it is
not a class type it satisfies the premise of rule Seq which requires
the type of the first expression not to be a class type, so it can be
discarded without violating linearity. It also requires that the type of
the first expression is not of type bot to disallow dead code after a
continue λ expression (see rule Continue). The type of the sequential
expression is the type of the latter expression, void. We summarize
the derivations described so far in the following:

Seq

New

S 4sbt StackProtocol
∆3 = s : Stack[end], k : Stack[end]

∆3 ` s = new Stack : void a ∆2

AsgnR
. . .

∆2 ` k = s : void a ∆0

∆3 ` s = new Stack; k = s : void a ∆0

To preserve linearity, s and k exchange their typestates before and
after assignment, as expected. If the type of s in ∆0 is not inactive,
it means that path s can be used after its assignment, thus violating
linearity, as in the following code:

s = new Stack; k = s; s.push(5) (3)
To conclude, in rules AsgnR and New the path this is not assignable.
In rule PathR the path this is not inferrable.

The other rules for paths and assignments are as follows. Rule
PathC infers a constant type U for a path r and has no effect in the
input typing context, if r is mapped to U in the input typing context.
Rule AsgnC follows the same line as AsgnR, the difference being the
type of e which is a constant type U that is left unchanged in the
input and output typing contexts.

Recursion and Choice. We now explain recursion and choice
by using an example of a recursive loop. The example is used to
explain rules LExpr, Continue, Switch, and If. Consider the following
class StackUser that defines methods that use a Stack object:

1 class StackUser:
2 {{Stack pushN(Stack): {Stack popAll(Stack):end}}}{
3 Stack pushN(Stack x) { x.push(2); x }
4 Stack popAll(Stack x)
5 {loop:switch(x.isEmpty())
6 {case EMPTY:x,
7 case NOTEMPTY:x.pop();continue loop}}}

and ∆0 = x : Stack[end], this : StackUser[end], the input typing
context. The body of method popAll in line 4 is a labelled expression,
and so rule LExpr applies. The premise requires an inference for
the switch expression by using in input ∆0 augmented with the
assumption loop : X, where X is fresh. Let ∆1 = ∆0, loop : X. LExpr
closes all free occurrences of X in the output typing context. For the
switch expression rule Switch is used, which requires a typestate
inference for all the switch branches. The input typing context for
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every branch is the same as the one for switch, namely ∆1. The
inferred output contexts of the branches are then joined and used
in input to infer a typestate for the method call expression in the
condition of the switch. The condition should have an enumeration
type that matches the type of the switch definition. Finally, the type
of switch is the join of the types of its branches. For the TRUE branch
we use rule PathR:

PathR
∆2 = x : Stack[S ], this : StackUser[end], loop : X

∆2 ` x : Stack[S ] a ∆1

For the FALSE branch we first use rule Seq and then rule Continue
to infer the typestate of the continue loop expression. Continue
requires loop to be mapped to a recursive variable X in the input
typing context. It then outputs a typing context where all paths
mapped to a typestate are updated to the typestate X, as in:

Continue
∆3 = x : Stack[X], this : StackUser[X]

∆3 ` continue loop : bot a ∆1

The type of the continue expression is bot, since we want join(·, ·)
to be defined (cf. Fig. 5). To complete the typing of the FALSE
branch, we apply rule Call for x.pop() and conclude with rule Seq.
The output typing context is:

∆4 = x : Stack[{int pop() : X}], this : StackUser[X]
We join the output typing contexts ∆2 and ∆4 of the TRUE and FALSE
branch, respectively and use the result as an input typing context for
the method call x.isEmpty(), as stated by the premises of Switch.
The output typing context of Switch is:

∆5 = x : Stack[{Choice isEmpty() : join(S , int pop() : X)}],
this : StackUser[join(end, X)]

To complete the inference of LExprwe close the recursive variable X
in ∆5 and obtain the output typing context for the labelled expression
in lines 4-5, which is:

∆6 = x : Stack[µX.Choice isEmpty() : join(S , int pop() : X)],
this : StackUser[µX.join(end, X)]

Notice the equivalence of the type µX.join(end, X), that appears in
the mapping of path this, and the type end, meaning that rule Equiv
can be applied.

Rule If types the conditional expression in a similar way as
rule Switch. Both conditional branches are individually inferred and
then joined to obtain the output typing context of the if ... else
expression. We further require that the condition has type bool.

Method Call. Rule Call records the method call trace of paths
in a program, to respect the principle that the trace of the execution
of an object follows its inferred typestate. It uses the function initT,
defined by T , C =⇒ initT(T ) = T and initT(C) = C[end].

Rule Call requires typechecking the method body every time a
method is called. This is a simplification for presentational purposes.
It means that if an algorithm is directly extracted from the rules,
it is unable to construct a type in the case of a recursive method
call. However, the rules can be used to derive typings if suitable
pre- and post-conditions are put into the derivation by hand. The
implementation of Mungo’s type inference system uses a more
complex notion of partial typestate so that method bodies do not
need to be checked at every call site; recursive methods are also
supported.

As an example of the rule Call, consider the following code that
uses class StackUser:

s = c.pushN(s)

and ∆0 = s : Stack[S ], c : StackUser[{Stack popAll(Stack) :
end}], the input typing context. By applying rule AsgnR on the above
assignment with input ∆0, the output typing context in the premise of
the rule is ∆1 = s : Stack[end], c : StackUser[{Stack popAll(Stack) :
end}]. At this point we can apply rule Call on c.pushN(s) and have
the following derivation:

Call

Stack pushN(Stack x) {x.push(2); x} ∈ methods(StackUser) (1)
∆2 ` (x.push(2); x){c/this} : Stack[S ] a ∆1 (2)
∆ ` s : Stack[{void push(int) : S }] a ∆3 (3)

∆ ` c.pushN(s) : Stack[S ] a ∆1

The premise of Call, given in (1), performs a lookup in the meth-
ods of the class of the receiver, ListCons, to obtain the defini-
tion of method Stack prod(Stack). Next, in (2), the premise in-
fers a typestate for the body of the method in which c has been
substituted for the keyword this. Both the method call and its
body use the same input typing context. The output typing con-
text of the body of the method should contain a typestate as-
sumption for the method parameter and the receiver, as follows:
∆2 = ∆1, x : Stack[{void push(int) : S }]. Then, in (3) Call requires
a typestate inference in order to match the typestate of the method
parameter with the type of the method call argument. For this, rule
PathR is used where ∆3 also updates the type of the receiver:
∆3 = s : Stack[end],
c : StackUser[{Stack pushN(Stack) : {Stack popAll(Stack) : end}}]
∆ = Stack[{void push(int) : S }],
c : StackUser[{Stack pushN(Stack) : {Stack popAll(Stack) : end}}]
Rule Call requires that the types of the receiver c in the input and
output typing contexts for the body of the method are equivalent,
according to the relation =sbt. This is to respect the abstraction
principle: the client would know how a method uses its receiver. For
example, assume method Stack pushN(Stack) is defined as:
Stack pushN(Stack x) { x.push(2); x = this.popAll(x); x }

If we infer a typestate for the body of Stack pushN(Stack) with
input context ∆1 we get: an output typing context, ∆′, such that:
∆′(c) = StackUser[Stack popAll(Stack) : {{Stack popAll(Stack) :
end}}]. Given that ∆1(c) = StackUser[{{Stack popAll(Stack) :
end}}], it is revealed that the body of Stack pushN(Stack) calls
method Stack popAll(Stack) on its receiver object, thus violating
the abstraction principle.

Classes and Programs. The rules for classes and programs are
given in Fig. 7. They make use of inference rules for the fields
of a class, which we explain first. The typestates of the fields of
a class are inferred when method calls of that class take place.
This procedure is described by the inference rules for typestates.
Rule Set-St requires the inference and join of the typestates of all
branches in an internal choice. Rule Method-St relies on the infer(T )
definition that maps a type T to the corresponding inferred type U
as: T , C =⇒ infer(T ) = T and infer(C) = C[S ], for some S .
Rule Method-St infers a method-prefixed typestate, where first it
requires an inference of the continuation typestate, and then uses the
output typing context to infer the method prefix; it infers a typestate
for a method definition by first inferring a typestate for its body.
The auxiliary function infer(T ) is used to check that the return and
parameter types of the method match the types of the inferred ones.
As in Call, a self-call should preserve the typestate of the receiver
up to type equivalence. Rule Enum-St is similar to rule Method-St. It
requires the inference and join of the typestates of all the external
choices and then infers the method prefix. Rule End-St requires all
fields of the class to finish in the inactive typestate. Rules Rec-St
and Var-St are similar to rules LExpr and Continue, where they bind
and use a recursive variable, respectively. Rule Class initiates the
inference of the typestate of the class. It states that a class declaration
is well-typed if every field of the class has an inactive typestate and
this is assumed in the typing context in the premise of Class. A
program is well-typed if all of its classes are well-typed, as stated by
rule Program. To illustrate the rules, we show a typestate inference
for StackUser in App. C.

In Fig. 8 we give the inference rules for runtime expressions.
We show only the ones that are different with respect to the rules
in Fig. 6. Rule Switch-AtR is similar to Switch, the difference being
the condition of the switch, which is evaluated to an active receiver
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Method-St

∆′ ` C[S ] T1 m(T2 x) {e} ∈ methods(C) ∀`, S ′
`
−−−→ S =⇒ S

`
−−−→ S

∆, this : C[S ′], x : infer(T2) ` e : infer(T1) a ∆′, this : C[S ], x : initT(T ′)
∆ ` C[{T m(T ′) : S }]

Set-St

∀H ∈ H̃. ∆H ` C[{H}]
∆ = join({∆H}H∈H̃)

∆ ` C[H̃]

Enum-St

∀l ∈ E. ∆l ` C[S l] E m(T x) {e} ∈ methods(C)
∆, x : C[S ′] ` E m(T x) {e} : E a ∆′′ ∆′′ = join({∆l}l∈E)

∆ ` C[E m(T ) : 〈S l〉l∈E]
End-St

∆ = { f : C′[end] | C′ f ∈ fields(C)} ∪
{ f : T | T f ∈ fields(C) and T , C}

∆ ` C[end]

Rec-St
∆′ ` C[S ] ∆ = {r : C[µX.S ] | r : C[S ] ∈ ∆′} ∪

{r : U | r : U ∈ ∆′ and U , C′[S ′]}
∆ ` C[µX.S ]

Var-St
∆ = { f : C′[X] | C′ f ∈ fields(C)}
∪ { f : T | T f ∈ fields(C) and T , C}

∆ ` C[X]

Class
∆ ` C[S ]

∀ f : C′[S ] ∈ ∆ =⇒ S = end

` class C : S {F̃; M̃}

Program
∀D ∈ D̃ D = class C : S {F̃; M̃} =⇒ ` D

` D̃

Figure 7. Typestate inference rules for methods, classes and programs

Switch-AtR
∀l ∈ E. ∆l, r : C[S l] ` el : Ul a ∆′ ∆ ` e : E a ∆′′, r : C[〈S l〉l∈E]

∆′′ = join({∆l}l∈E)
∆ ` switch (e@r) {el}l∈E : join({Ul}l∈E) a ∆′

AtR
∆ ` e : U a ∆′

∆ ` e@r : U a ∆′
Config

∆ ` h ∆ ` e : U a ∆′

∆ ` h, e : U a ∆′

Heap

∀r : U ∈ ∆.
h(r) = o ∆ ` o : U a ∆

∆ ` h
Object

typestate(C) = S

S
s
−−−→ S ′

∆ ` C[ f̃ : o] : C[S ′] a ∆

Figure 8. Typestate inference rules for runtime syntax

Ty-Id
∆

τ
−−−→ ∆

Ty-If
∆′ 4sbt ∆

∆
if
−−−→ ∆′

Ty-AsgnC
∆

r. f =c
−−−→ ∆

Ty-Call
∆, r : C[{T m(T ′) : S }]

r.T m T ′
−−−→ ∆, r : C[S ]

Ty-AsgnR
∆, r. f : C[end], r′ : C[S ]

r. f =r′
−−−→ ∆, r. f : C[S ], r′ : C[end]

Ty-New
(S 4sbt typestate(C) ∧ ∀r. f . f ′ : C′[S ′] ∈ ∆. S ′ = end)

∆, r. f : C[end]
r. f .new C
−−−→ ∆, r. f : C[S ]

Ty-Label
∆′ 4sbt ∆

∆, r : C[〈S l〉l∈E]
r.〈l′〉
−−−→ ∆′, r : C[S l′ ]

Figure 9. Reduction relation on typing contexts

rather than a method call. Rule AtR infers a typestate for e@r, by first
inferring a typestate for e. The other rules are used to type runtime
configurations. Rule Heap uses rule Object to check whether a typing
context is consistent with all the objects in the heap. Rule Object
checks that the typestate of the objects in the context match the
declared typestate of their class. Finally, rule Config infers a typestate
for a runtime configuration, by first inferring a typestate for the
expression and then using its output typing context to type the heap.
The output typing context and the typestate of the configuration
match those of the expression.

6.2 Properties of the typestate inference system
Progress and subject reduction require that the output typing context
of an expression mimics the reductions of the expression itself. To
this end, we define a labelled reduction relation on the typing context
in Fig. 9 which use the same labels as the reductions on expressions.
Rule Ty-Id states that ∆ remains unchanged under a τ-reduction. Rule
Ty-New states that a path in ∆ mapped to an inactive typestate reduces
under r. f .new C and its typestate is updated accordingly. Rules Ty-
AsgnR and Ty-AsgnC label the reduction with an assignment of a path
and a constant, respectively. The former reduction ensures linearity
conditions when an assignment takes place. The latter leaves the
typing context unchanged. Rule Ty-Call performs a reduction of a
method-prefixed typestate with the method prefix itself being the
label. Similarly, rule Ty-Label reduces with an enumerated value for
paths that have a runtime switch typestate. The behaviour of the if
label is captured by rule Ty-If. In both the last two rules the result of
the reduction is a subtype of the starting typing context.

We state the progress and subject reduction theorem in the
following. The proof is given in App. A.2.

Theorem 6.3 (Progress and Subject Reduction). Let a set of decla-
rations D̃ with ` D̃. Assuming D̃ is the program context, let e be a
run time expression and suppose ∆ ` h, e : U a ∆′′. Then, either e
is a value, or there exist `, h′ and e′ such that h, e

`
−−−→ h′, e′, and

there exist ∆′ and U′ such that ∆
`
−−−→ ∆′ and ∆′ ` h′, e′ : U′ a ∆′′

and U′ 4sbt U.

Subject reduction requires that the trace of the execution of a
program is included in the trace of the inferred typestates of
the program. Furthermore, we require a progress property on
expressions: an expression that is not a value can always reduce. As
a corollary of Theorem 6.3, we further observe that the trace of the
inferred context of a program is included in the declared typestate
of the program. This is stated by the following.

Corollary 6.4 (Coherence of Typestate Inference). Let D̃ be a set
of declarations such that ` D̃. Assuming D̃ to be the ambient
program context, let e be a run time expression and suppose

∆ ` h, e : U a ∆′. If h, e
˜̀
−−−→

r. f .new C
−−−→ h′, e′, for some ˜̀, then

∆ = ∆′′, r : C[end] with ∆′ = ∆′′, r : C[S ] and S 4sbt typestate(C).

7. Related Work
Session types and programming languages. The Session Java (SJ)
language [28] builds on earlier work [14, 15, 17] to add binary
session type channels to Java. SJ has been applied to a range of
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situations including scientific computation [37] and event-driven
programming [26]. SJ implements a library for binary sessions
that have a pre-defined interface. The Java syntax is extended with
communication statements that enable typechecking. The scope of
a session is restricted to the body of a single method. Mungo lifts
these restrictions by allowing the abstraction of multiparty session
types as user-defined objects that can be passed and used throughout
different program scopes. Gay et al. [23] outlined an implementation
of their type system as a language called Bica, which is not currently
maintained and is unusable. Mungo improves on Bica by using type
inference to remove the need for typestate declarations on methods.

The work in [26] extends Session Java with runtime type in-
spection and asynchronous communication semantics to enable an
event-driven framework based on binary session types. As a usecase
they implement a binary session-typed SMTP server that uses a
reactive structure to handle multiple clients concurrently. In our
work we implement an SMTP client by using StMungo, which auto-
matically generates code from a global protocol. Extending Mungo
with runtime typestate inspection would enable us to investigate
event-driven programming with multiparty session types.

Capecchi et al. [9] proposed that a class defines sessions instead
of methods. A session generalises a method to an extended session
typed dialogue over a communication channel As far as we know,
this new paradigm has not yet been implemented.

The work in [36] typechecks the operations of a library that im-
plements multiparty session types using a restricted set of MPI [30]
primitives. In contrast, our framework typechecks Java statements
and expressions, instead of higher-level operations. The work in [35]
uses Scribble to automatically generate MPI code based on user-
defined kernels that produce and consume data. The generated code
does not require typechecking. On the other hand, the StMungo
translation can be used together with the Mungo typechecker to
develop more flexible multiparty session type implementations.

Monitoring based on Scribble definitions. Neykova et al. [34]
have used Scribble protocol definitions to achieve dynamic mon-
itoring in Python, by translating local protocols into finite state
machines that intercept communication and check the validity of
runtime messages. Subsequently, [33] implements a session-based
Actor framework that uses runtime monitoring to integrate multi-
party session types. A hybrid approach has been used by Hu [27] to
analyse an SMTP client in Java. Hu’s SMTP API implements multi-
party session types using a pattern in which each communication
method returns the receiver object with a new type that determines
which communication methods are available at the next step. If the
pattern is used properly then standard Java typechecking can verify
correctness of communication, but runtime monitoring is needed to
check linearity constraints. In contrast, our analysis of SMTP is able
to statically check all aspects of the protocol implementation.

The receiver-returning pattern is at the basis of functional pro-
gramming with session types [22] and has been used to achieve
protocol checking in Idris [29] and as a replacement for explicit
typestate in Rust [39].

Typestate. There have been many efforts to add typestate to
practical languages, since their introduction in [42]. Vault [12, 19]
is an extension of C, and Fugue [13] applies similar ideas to C#.
Plural [6] is based on Java and has been used to study access
control systems [5] and transactional memory [4], and to evaluate
the effectiveness of typestate in Java APIs [6]. In contrast Mungo
follows Gay et al. which is inspired by session types; the possible
sequences of method calls are explicitly defined, rather than being
consequences of pre- and post-conditions. Like Plural, a typestate
in Mungo can depend on the return value of a method call.

Sing# [18] is an extension of C# which was used to implement
Singularity, an operating system based on message-passing. It
incorporates typestate-like contracts, which are a form of session

type, to specify protocols. Bono et al. [8] have formalised a core
calculus based on Sing# and proved type safety.

Aldrich et al. [2, 43] proposed a new paradigm of typestate-
oriented programming, implemented in the Plaid language. Instead
of class definitions, a program consists of state definitions contain-
ing methods that cause transitions to other states. Transitions are
specified in a similar way to Plural’s pre- and post-conditions. Like
classes, states are organised into an inheritance hierarchy. The most
recent work [20, 44] uses gradual typing to integrate static and dy-
namic typestate checking. We focus on the object-oriented paradigm
in order to be able to apply our results to Java.

Bodden and Hendren [7] developed the Clara framework, which
combines static typestate analysis with runtime monitoring. The
monitoring is based on the tracematches approach [3], using regular
expressions to define allowed sequences of method calls. The static
analysis attempts to remove the need for runtime monitoring, but if
this is not possible, the runtime monitor is optimised. Mungo uses a
purely static analysis, and can allow the state after a method call to
depend on the method’s (enumerated type) result.

Typestate systems must control aliasing, otherwise method calls
via aliases can cause inconsistent state changes. Literature in-
cludes the “adoption and focus” approach of Vault and Fugue, the
permission-based approaches of Plural and Plaid, and an expressive
fine-grained system by Militão et al. [31]. Also relevant is recent
work by Crafa and Padovani [11] which applies the chemical ap-
proach to concurrent typestate oriented programming, allowing ob-
jects to be accessed and modified concurrently by several processes,
each potentially changing only part of their state. We expect that
many of these systems can be applied to Mungo. However, linear
typing has not been a limiting factor for the applications described
in the present paper.

8. Concluding Remarks and Future Work
Concluding Remarks. We have presented two tools, Mungo and
StMungo, which extend the Java development process with support
for static typechecking of communication protocols. Mungo extends
Java with typestate definitions, which associate classes with state
machines defining permitted sequences of method calls. StMungo
uses the typestate feature to connect Java to Scribble, the latter being
a language used to specify communication protocols. In order to
illustrate the practicality and robustness of Mungo and StMungo, we
have implemented a substantial use case, an SMTP client, which we
were able to statically typecheck. We use this client to communicate
with the gmail server. Finally, we have formalised the essential
features of Mungo by defining a typestate inference system for a core
object-oriented language. We proved safety and progress properties
(Theorem 6.3). These properties guarantee the coherence of the
typestate inference system with respect to the declared typestate in
a program (Corollary 6.4).

Future Work. The combination of Mungo and StMungo is
effective for statically checking the correct implementation of
communication protocols. We intend to extend Mungo to increase
its power for general-purpose programming with typestate. Our
first aim is to generalise the use of linear typing as a mechanism
for the alias control required by typestate systems. Candidates
include the “adoption and focus” technique of Vault and Fugue,
the permission-based approaches of Plural and Plaid, and the
system by Militão et al. [31]. Another aim is to support generics
and inheritance. Inheritance between typestate classes requires a
subtyping relation between their typestate specifications, based on
standard definitions of subtyping for session types [21]. Method calls
on an object whose type is a generic parameter must be typechecked
against the typestate specification of the parameter’s upper bound.
To extend typechecking to exception handlers, we need to allow
typestate specifications to define the state transitions corresponding
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to exceptions, and check that these transitions are consistent with the
states of fields at the point where an exception is thrown. Existing
work on exceptions in session types [10] provides inspiration, but
doesn’t address the complexities of Java’s exception mechanism.
Using these Mungo extensions with StMungo for more sophisticated
protocol verification will also require extensions to Scribble to
support generic protocols, inheritance between protocols, and more
general handling of exceptions.
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A. Progress and Subject Reduction
A.1 Auxiliary Results
In the following we use ∆{v : U} to denote ∆ where the value v is updated to the type U.

Lemma A.1 (Typability of Heap Update). Let h be a heap and r a runtime path such that ∆ ` h and r : U ∈ ∆.

1. If U , C[S ] and ∆ ` o : U a ∆, then ∆ ` h{r 7→ o}.
2. If U = C[S ] and ∆′ ` o : C[S ′] a ∆′, then ∆′ ` h{r 7→ o}, where ∆′ = ∆{r : C[S ′]}.

Proof. Both cases follow by using rule Heap and for 1. typing rules for constants are used, and for 2. rule Object is used.

Lemma A.2 (Replacement). If

• d is a derivation for ∆ ` E[e] : U a ∆′′,
• d′ is a subderivation of d concluding ∆ ` e : Ue a ∆e,
• the position of d′ in d corresponds to the position of the hole in E,
• ∆′ ` e′ : Ue′ a ∆e, such that Ue′ 4sbt Ue,

then ∆′ ` E[e′] : U′ a ∆′′ such that U′ 4sbt U.

Proof. Follows [23], by replacing the derivation d′ in d with the derivation for ∆′ ` e′ : Ue′ a ∆e.

Lemma A.3 (Substitution). 1. If ∆, x : U′ ` e : U a ∆′ and ∆{v : U′} ` v : U′ a ∆′′, then ∆{v : U′} ` e{v/x} : U a ∆′.
2. Assume ∆1 ` e : U a ∆′, λ : X and ∆2 ` e′ : U a ∆′.

Then, ∆ ` e{e′/continue λ} : U a ∆′ with

∆ = {r : C[S {S ′/X}] | r : C[S ] ∈ ∆1 and r : C[S ′] ∈ ∆2}

∪ {r : U′ | r : U′ ∈ (∆1 ∪ ∆2)U′ , C′[S ′]}
∪ ∆1\∆2 ∪ ∆2\∆1

Proof. The proof proceeds by induction on the last typing rule used for the assumed judgement. The second case uses Lemma A.2.

Lemma A.4 (Subtyping and join). The following relate subtyping and join on inferred types U and typing contexts ∆.

• Let U,U′ be inferred types such that join(U,U′) is defined. Then, U 4sbt join(U,U′) and U′ 4sbt join(U,U′).
• Let ∆,∆′ such that join(∆,∆′) is defined. Then, ∆ 4sbt join(∆,∆′) and ∆′ 4sbt join(∆,∆′).

Proof. The proof follows immediately by combining the definition of subtyping in Fig. 4 and the definition of join Fig. 5.

Lemma A.5 (Typeability of Subterms). If d is a derivation for ∆ ` E[e] : U a ∆′′ then there exist ∆′ and U′ such that d has a subderivation d′
concluding ∆ ` e : U′ a ∆′ and the position of d′ in d corresponds to the position of the hole in E.

Proof. The proof proceeds by induction on the structure of context E.

• E = []: follows trivially by assumption.
• E = r.m(E′): by assumption ∆ ` r.m(E′[e]) : U a ∆′′. By inversion on rule Call ∆ ` E′[e] : U′ a ∆′′′, r : C[{T m(T ′) : S }], where the

typing context ∆′′′ and the type of r are inferred by the premise of Call. We conclude by induction hypothesis on E′.
• E = r. f = E′: by assumption ∆ ` r. f = E′[e] : U a ∆′′. There are two rule that can be applied for assignment, rule AsgnC and rule AsgnR.

By inversion on the former we obtain ∆ ` E′[e] : U a ∆′′′, r : U; by inversion on the latter we obtain ∆ ` E′[e] : C[S ] a ∆′′′, r : C[end],
where the typing context ∆′′′ and the type for r are inferred by the premise of the rule. We conclude by induction hypothesis on E′.
• E = E′; e′: by assumption ∆ ` E′[e]; e′ : U a ∆′′. By inversion on rule Seq ∆ ` E′[e] : U′′ a ∆′′′, where the typing context ∆′′′ and the type

U′′ are inferred by the premise of the rule. We conclude by induction hypothesis on E′.

The rest of the cases follow the same idea as the above.

A.2 Progress and Subject Reduction

Proof of Theorem 6.3: Let D̃ be a set of declarations such that ` D̃. In a context parametrized by D̃, let e be a run time expression and suppose
∆ ` h, e : U a ∆′′.

Then, either e is a value, or there exist `, h′ and e′ such that h, e
`
−−−→ h′, e′, and there exist ∆′ and U′ such that ∆

`
−−−→ ∆′ and

∆′ ` h′, e′ : U′ a ∆′′ and U′ 4sbt U. Proof. The proof proceeds by induction on the structure of the expression e with respect to contexts.
We present first the inductive case. Let e = E[e1] where e1 is not a value and E , []. By assumption and inversion on rule Config we have
∆ ` E[e1] : U a ∆′′. By Lemma A.5 there exist ∆1 and U1 such that ∆ ` e1 : U1 a ∆1. By induction hypothesis there exist h′, ` such that
h, e1

`
−−−→ h′, e2. By induction hypothesis we also have ∆

`
−−−→ ∆′ and ∆′ ` h, e2 : U2 a ∆1, which by inversion on Config means that ∆′ ` h

and ∆′ ` e2 : U2 a ∆1, where U2 4sbt U1. By rule R-Ctx we have h,E[e1]
`
−−−→ h′,E[e2]. By Lemma A.2 we obtain ∆′ ` E[e2] : U′ a ∆′′ with

U′ 4sbt U. We conclude by rule Config.
The base cases when e is of the form E[v] with E elementary, not being of the form E[E′] with E′ , [], and not of the form E[e1] are in the

following. If e is a value, then there is nothing to prove. If e is not a value, by the operational semantics rules, we have the following cases for e
with respect to contexts.
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• e = v; e′. By hypothesis and reduction rule R-Seq

h, (v; e′)
τ
−−−→ h, e′

By hypothesis and typing rule Config ∆ ` h and ∆ ` v; e′ : U a ∆′′. By inversion and typing rule Seq

Seq
∆ ` v : U′ a ∆1 U′ , C[S ]

∆1 ` e′ : U a ∆′′

∆ ` v; e′ : U a ∆′′

By reduction rule Ty-Id ∆
τ
−−−→ ∆. Since U′ , C[S ] and value v is of type U′ it means v is some constant c. Hence, the judgement

∆ ` v : U′ a ∆1 is obtained by applying one of the following typing rules: Void, Enum, or Bool. By inversion this implies ∆1 = ∆. Then, by
rewriting the premise of the typing rule for e′ we have ∆ ` e′ : U a ∆′′. We conclude by rule Config.
• e = (r. f = new C). By hypothesis and typing rule R-New

h, r. f = new C
r. f .new C
−−−→ h{r. f 7→ C[ ˜f : init(T )]}, ∗

such that fields(C) = T̃ f . By hypothesis and typing rule Config ∆ ` h and ∆ ` r. f = new C : U a ∆′′. By inversion and typing rule New we
have:

New
S 4sbt typestate(C) ∀r. f . f ′ : C′[S ′] ∈ ∆1 =⇒ S ′ = end

∆1, r. f : C[end] ` r. f = new C : void a ∆1, r. f : C[S ]
where ∆ = ∆1, r. f : C[end], U = void and ∆′′ = ∆1, r. f : C[S ]. By rule Ty-New we have

∆1, r. f : C[end]
r. f .new C
−−−→ ∆1, r. f : C[S ] = ∆′′

such that S 4sbt typestate(C) and for all fields r. f . f ′ : C′[S ′] ∈ ∆1 and state S ′ = end. By applying typing rule Void we have:

∆′′ ` ∗ : void a ∆′′

It remains to prove ∆′′ ` h′ namely,

∆1, r. f : C[S ] ` h{r. f 7→ C[ ˜f : init(T )]}

Recall that, by hypothesis ∆1, r. f : C[end] ` h. Now we want to type the updated reference r. f to C[ ˜f : init(T )]. By rule Object and an
empty set of labels s̃

typestate(C) = S

∆1, r. f : C[S ] ` C[ ˜f : init(T )] : C[S ] a ∆1, r. f : C[S ]
We conclude by Lemma A.1.
• e = (r. f = c). By hypothesis and by rule R-AsgnC

h, r. f = c
τ
−−−→ h{r. f 7→ c}, ∗

By hypothesis and by rule Config ∆ ` h and ∆ ` r. f = c : U a ∆′′. By inversion and typing rule AsgnC we have
AsgnC
U′ , C[S ] ∆ ` c : U′ a ∆′, r. f : U′

∆ ` r. f = c : void a ∆′, r. f : U′

where U = void and ∆′′ = ∆′, r. f : U′. Since the value assigned to r. f is a constant c the judgement of the premise ∆ ` c : U′ a ∆′, r. f : U′

must have been obtained by one of the following typing rules: Void, Enum, or Bool. This implies that ∆ = ∆′, r. f : U′. By Ty-Id, ∆
τ
−−−→ ∆.

We have to prove that ∆ ` h{r. f 7→ c}, ∗ : void a ∆′, r. f : U′. By rule Void, ∆ ` ∗ : void a ∆′, r. f : U′. Recall that, by hypothesis and rule
Heap and inversion we have

Heap
h(r. f ) = c′ ∆′, r. f : U′ ` c′ : U′ a ∆′, r. f : U′

∆′, r. f : U′ ` h
By updating the heap to h{r. f 7→ c}, using the typing judgement for c in the premise of AsgnC and Lemma A.1 we derive
∆′, r. f : U′ ` h{r. f 7→ c}. We conclude by rule Config.
• e = (r. f = r′). By hypothesis and by rule R-AsgnR

h, r. f = r′
r. f =r′
−−−→ h′{r. f 7→ h(r′)}, ∗

where h′ = h{r′ 7→ null}. By hypothesis and by rule Config ∆ ` h and ∆ ` r. f = r′ : U a ∆′′. By inversion and typing rule AsgnR

∆ ` r′ : C[S ] a ∆1, r. f : C[end]
∆ ` r. f = r′ : void a ∆1, r. f : C[S ]

where U = void and ∆′′ = ∆1, r. f : C[S ] and for readability let ∆2 = ∆1, r. f : C[end]. Let r′ , r. f . Since r′ is a path typed by C[end],
the premise of the above derivation is obtained by applying PathR. This implies that contexts ∆ and ∆2 differ only in the typing of r′. By
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inversion, ∆(r. f ) = ∆2(r. f ) = C[end] and ∆(r′) = C[S ] and ∆2(r′) = ∆1(r′) = C[end]. By rule Ty-AsgnR

∆3, r′ : C[S ], r. f : C[end]
r. f =r′
−−−→ ∆3, r. f : C[S ], r′ : C[end]

where ∆ = ∆3, r′ : C[S ], r. f : C[end] and ∆′ = ∆3, r. f : C[S ], r′ : C[end]. Since ∆′′ = ∆′, by applying rule Void we conclude
∆′ ` ∗ : void a ∆′′. It remains to prove that

∆3, r. f : C[S ], r′ : C[end] ` h′{r. f 7→ h(r′)}

where h′ = h{r′ 7→ null}. Recall that
∆3, r′ : C[S ], r. f : C[end] ` h

The result follows immediately by applying twice Lemma A.1 for r. f and r′. We conclude by Config. Let r′ = r. f . By rewriting AsgnR with
r. f instead of r′ we notice that the derivation holds if S = end. Then the proof proceeds trivially.
• e = r.m(v). By hypothesis and by rule R-Call

h, r.m(v)
r.T m T ′
−−−→ h, e{v/x}{r/this}@r

such that h(r) = C[ f̃ : o] and T m(T ′ x) {e} ∈ methods(C). By hypothesis and by rule Config ∆ ` h and ∆ ` r.m(v) : U a ∆′′. By inversion
and typing rule Call

T m(T ′ x) {e} ∈ methods(C) S ′ =sbt S
∆2, r : C[S ′], x : U′ ` e{r/this} : U a ∆1, r : C[S ]

∆ ` v : U′ a ∆2, r : C[{T m(T ′) : S ]}
∆ ` r.m(v) : U a ∆1, r : C[S ]

where ∆′′ = ∆1, r : C[S ] and for readability let ∆′′′ = ∆2, r : C[{T m(T ′) : S ]}. Notice that v , r, otherwise the method call r.m(v) would
not be well-typed. Then, ∆(r) = ∆′′′(r) = C[{T m(T ′) : S }]. Let ∆ = ∆3, r : C[{T m(T ′) : S }] By Ty-Call

∆3, r : C[{T m(T ′) : S }]
r.T m T ′
−−−→ ∆3, r : C[S ]

We need to prove that ∆3, r : C[S ] ` h and also ∆3, r : C[S ] ` e{v/x}{r/this}@r : U a ∆′′. By AtR it suffices to show ∆3, r : C[S ] `
e{v/x}{r/this} : U a ∆′′. By the premise of Call,

∆2, r : C[S ′], x : U′ ` e{r/this} : U a ∆1, r : C[S ]

∆3, r : C[{T m(T ′) : S }] ` v : U′ a ∆2, r : C[{T m(T ′) : S ]}
we can notice that ∆2 and ∆3 are such that either ∆2 = ∆3 with ∆2(v) = ∆3(v) = U′ or ∆2(v) = U′′ and ∆3 = ∆2{v : U′/v : U′′} By
Lemma A.3 we have

∆3, r : C[S ′] ` e{v/x}{r/this} : U a ∆1, r : C[S ]
Since S =sbt S ′, we conclude by rule Equiv. Recall that ∆3, r : C[{T m(T ′) : S }] ` h. By Heap we have

h(r) = C[ f̃ : o] ∆ ` C[ f̃ : o] : C[{T m(T ′) : S }] a ∆

∆3, r : C[{T m(T ′) : S }] ` h

which by Object it means that

typestate(C) = S C ∃s̃. S C
s̃
−−−→ {T m(T ′) : S }

∆ ` C[ f̃ : o] : C[{T m(T ′) : S }] a ∆

We perform another reduction with label T m(T ) and we have

typestate(C) = S C ∃s̃. S C
s̃
−−−→ {T m(T ′) : S }

T m(T ′)
−−−→ S

∆3, r : C[S ] ` C[ f̃ : o] : C[S ] a ∆3, r : C[S ]

We now can type ∆3, r : C[S ] ` h by rule Heap. We conclude by rule Config.
• e = v@r. By hypothesis and by rule R-Value

h, v@r
τ
−−−→ h, v

for v , l. By hypothesis and by rule Config ∆ ` h and ∆ ` v@r : U a ∆′′. By inversion and typing rule AtR

∆ ` v : U a ∆′′

∆ ` v@r : U a ∆′′

By reduction rule Ty-Id ∆
τ
−−−→ ∆. The thesis follows trivially.

• e = switch (l′@r) {el}l∈E . By hypothesis and by rule R-Switch

h, switch (l′@r) {el}l∈E
r.〈l′〉
−−−→ h, el′

for some l′ ∈ E. By hypothesis and by rule Config ∆ ` h and ∆ ` switch (l′@r) {el}l∈E : U a ∆′′. By inversion and typing rule Switch-AtR

∀l ∈ E ∆l, r : C[S l] ` el : Ul a ∆′′ ∆ ` l′ : E a ∆1, r : C[〈l : S l〉l∈E] ∆1 =
⊎
l∈E

∆l

∆ ` switch (l′@r) {el}l∈E : join({Ul}l∈E) a ∆′′
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where U = join({Ul}l∈E). By inversion and typing rule Enum we have that ∆ = ∆1, r : C[〈l : S l〉l∈E]. By Ty-Label

∆1, r : C[〈S l〉l∈E]
r.〈l′〉
−−−→ ∆l′ , r : C[S l′ ]

where l′ ∈ E and ∆′ 4sbt ∆. By Lemma A.4 we have that Ul′ 4sbt join({Ul}l∈E). The judgement ∆l′ , r : C[S l′ ] ` el′ : Ul′ a ∆′′ holds by the
premise of Switch for l′ ∈ E. We need to prove that ∆l′ , r : C[S l′ ] ` h. Recall that, by hypothesis ∆ ` h. By Heap and Object it means that

there exist s̃, such that typestate(C) = S C and S C
s̃
−−−→ 〈l : S l〉l∈E and

∆ ` C[ f̃ : o] : C[〈l : S l〉l∈E] a ∆

By Definition 6.2, we have 〈l : S l〉l∈E
l′
−−−→ S l′ . By applying rule Object on this reduction, we have

∆l′ , r : C[S l′ ] ` C[ f̃ : o] : C[S l′ ] a ∆l′ , r : C[S l′ ]

We conclude by rules Heap and Config.
• e = if (tt) e1 else e2. The case for if (ff) e1 else e2 is completely analogues. By hypothesis and by rule R-True

h, if (tt) e1 else e2
if
−−−→ h, e1

By hypothesis and by rule Config ∆ ` h and ∆ ` if (tt) e1 else e2 : U a ∆′′. By inversion and typing rule If

∆1 ` e1 : U1 a ∆′′ ∆2 ` e2 : U2 a ∆′′

∆3 = join(∆1,∆2) ∆ ` tt : bool a ∆3

∆ ` if (tt) e1 else e2 : join(U1,U2) a ∆′′

Where U = join(U1,U2). Rule Bool implies that ∆ = ∆3. By Ty-If ∆
if
−−−→ ∆′ and ∆′ 4sbt ∆. By Lemma A.4 we have that U1 4sbt join(U1,U2).

Then, ∆1 ` e1 : U1 a ∆′′ follows directly by the premise of If and by letting ∆′ = ∆1, since ∆1 4sbt join(∆1,∆2) = ∆. It remains to prove
that ∆1 ` h. Since ∆1 4sbt ∆, the thesis follows trivially by applying Heap.
• e = (λ : e′). By hypothesis and by rule R-Label

h, λ : e′
τ
−−−→ h, e′{λ : e′/continue λ}

By hypothesis and by rule Config ∆ ` h and ∆ ` λ : e′ : U a ∆′. By inversion and rule LExpr we get

∆′′ ` e′ : U a ∆′, λ : X
∆ = {r : C[µX.S ] | r : C[S ] ∈ ∆′′} ∪
{r : U′ | r : U′ ∈ ∆′′ and U′ , C′[S ′]}

∆ ` λ : e′ : U a ∆′

By rule Ty-Id ∆
τ
−−−→ ∆. Since ∆ ` h, it remains to prove that ∆ ` e′{λ : e′/continue λ} : U a ∆′. From the second case of the Substitution

Lemma A.3 we get:
∆′′′ ` e′{λ : e′/continue λ} : U a ∆′

with
∆′′′ = {r : C[S {µX.S /X}] | r : C[S ] ∈ ∆′′ and r : C[µX.S ] ∈ ∆}

∪ {r : U′ | r : U′ ∈ ∆′′ and U′ , C′[S ′]}
From the definition of ∆′′′ we can obtain that ∆′′′ = ∆ as required. We conclude by rule Config.

B. StMungo for Multiparty Session Types
In this section we illustrate StMungo on a multiparty protocol that models the process of booking flights through a university travel agent.

There are three participants involved: Researcher (abbreviated R), who intends to travel; Agent (A), who is able to make travel reservations;
and Finance (F), who approves expenditure from the budget. In the Scribble language, we first define the global protocol among three roles,
which are abstract representations of the participants. The protocol consists of sequences of interactions. Every message (e.g. request) can be
associated with a payload type (e.g. Travel), a sender, and one or more receivers. Typically payload types are structured data types defined
separately from the protocol specification.

In the following global protocol, after the quote and the check message requesting authorisation for a trip, Finance can choose to approve
or refuse the request:

1 global protocol BuyTicket(role R, role A, role F){
2 request(Travel) from R to A;
3 quote(Price) from A to R;
4 check(Price) from R to F;
5 choice at F {
6 approve(Code) from F to R,A;
7 ticket(String) from A to R;
8 invoice(Code) from A to F;
9 payment(Price) from F to A;
10 } or {
11 refuse(String) from F to R,A; }}
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The Scribble toolchain can be used to check the protocol definition for well-formedness and to derive a local version of the protocol for
each role, according to the theory of multiparty session types [25]. This is known as endpoint projection. Here we show the projection for
Researcher, which describes only the messages involving that role. The self keyword indicates that R is the local endpoint.

1 local protocol BuyTicket_R(self R, role A, role F){
2 request(Travel) to A;
3 quote(Price) from A;
4 check(Price) to F;
5 choice at F {
6 approve(Code) from F;
7 ticket(String) from R;
8 } or {
9 refuse(String) from F; }}

Notice that the exchange of invoice and payment between Agent and Finance is not included. Similarly, the local projection for Agent omits
the check message and the local projection for Finance omits the request, quote and ticket messages.

For the R role, StMungo converts the BuyTicket_R local projection into the following .mungo files:

1. RProtocol, capturing the interactions local to the R role as a typestate specification.

2. RRole, a class that implements RProtocol by communication over Java sockets. This is an API that can be used to implement the Researcher
endpoint.

3. RMain, a skeletal implementation of the Researcher endpoint. This runs as a Java process, and provides a main() method which uses RRole
to communicate with the other parties in the session.

The RProtocol definition generated by StMungo is as follows:

1 typestate RProtocol {
2 State0 = {
3 void send_requestTravelToA(Travel): State1 }
4 State1 = {
5 Price receive_quotePriceFromA(): State2 }
6 State2 = {
7 void send_checkPriceToF(Price): State3 }
8 State3 = {
9 Choice1 receive_Choice1LabelFromF():
10 <APPROVE: State4, REFUSE: State6> }
11 State4 = {
12 Code receive_approveCodeFromF(): State5 }
13 State5 = {
14 String receive_ticketStringFromA(): end }
15 State6 = {
16 String receive_refuseTravelFromF(): end }}

class RRole typestate RProtocol
{ /* Constructor and method definitions. */ }

The RRole class provides an implementation of RProtocol based on Java sockets. When instantiated, it connects to the other role objects in
the session (ARole and FRole); we omit the details here.

Finally, RMain provides skeletal implementation of the Researcher endpoint, using the RRole class to communicate with the other roles in
the system:

1 public static void main(String[] args) {
2 RRole r = new RRole();
3 Travel t = // input travel;
4 r.send_requestTravelToA(t);
5 Price p = r.receive_quotePriceFromA();
6 r.send_checkPriceToF(p);
7 switch(r.receive_Choice1LabelFromF()
8 .getEnum()) {
9 case APPROVE:
10 Code c = r.receive_approveCodeFromF();
11 println(r.receive_ticketStringFromA());
12 break;
13 case REFUSE:
14 println(r.receive_refuseStringFromF());
15 break; }}

As we already stated for SMTP, typically the programmer would flesh out the skeletal implementation with extra business logic. Mungo is
able to statically check RMain, or any client of the RRole class, to ensure that methods of the protocol are called in a valid sequence and that all
possible responses are handled.
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C. Type Inference Examples
C.1 Typestate Linearity
Consider the following code that uses the implementation of class Stack in section § 1:

s = new Stack; k = s

Also assume input typing context ∆0 = {s : Stack[end], k : Stack[S ]}. The inference tree for the above code is:

PathR
∆2 = s : Stack[S ], k : Stack[end]

∆2 ` s : Stack[S ] a ∆1
∆1 = s : Stack[end], k : Stack[end]

∆2 ` k = s : void a ∆0
AsgnR

New
S 4sbt StackProtocol

∆3 = s : Stack[end], k : Stack[end]
∆3 ` s = new Stack : void a ∆2

∆3 ` s = new Stack; k = s : void a ∆0
Seq

C.2 Recursion and Choice
Consider a class StackUser that defines methods that use a Stack object:

1 class StackUser : {{Stack pushN(Stack) : {Stack popAll(Stack):end}}} {
2

3 Stack pushN(Stack x) {
4 x.push(2); x
5 }
6

7 Stack popAll(Stack x) {
8 loop :
9 switch(x.isEmpty()) {
10 case TRUE: x
11 case FALSE: x.pop(); continue loop
12 }
13 }
14 }

Method Stack popAll(Stack): Consider the input typing context ∆0 = x : Stack[end], this : StackUser[end] and e is the switch expression
in the body of method Stack popAll(Stack). The inference tree for the body of method Stack popAll(Stack) is:

Call
. . . ∆1 = x : Stack[{int pop() : X}], this : StackUser[X]

∆1 ` x.pop() : int a ∆′1
Continue
∆′1 = x : Stack[X], this : StackUser[X]
∆′1 ` continue loop : bot a ∆0, loop : X

∆1 ` x.pop(); continue loop : bot a ∆0, loop : X
Seq

PathR
∆2 = x : Stack[S ], this : StackUser[end], loop : X

∆2 ` x : Stack[S ] a ∆0, loop : X
Call

∆3 = x : Stack[{Choice isEmpty() : join(S , int pop() : X)}],
this : StackUser[join(end, X)]

∆3 ` x.isEmpty() : Choice a join(∆1,∆2)
∆3 ` e : Stack[S ] a ∆0, loop : X

Switch

∆4 = x : Stack[µX.Choice isEmpty() : join(S , int pop() : X)],
this : StackUser[µX.join(end, X)]

∆4 ` loop : e : Stack[S ] a ∆0
LExpr

end =sbt µX.join(end, X)
∆ = x : Stack[µX.Choice isEmpty() : join(S , int pop() : X)],

this : StackUser[end]
∆ ` loop : e : Stack[S ] a ∆0

Equiv
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Method Stack pushN(Stack): Assume a typing context ∆0 = x : Stack[end], this : StackUser[{Stack popAll(Stack) : end}] The inference
tree for method Stack pushN(Stack) is:

PathR
∆1 = x : Stack[S ], this : StackUser[{Stack popAll(Stack) : end}]

∆1 ` x : Stack[S ] a ∆0
Call
. . . ∆ = x : Stack[{void push(int) : S }], this : StackUser[{Stack popAll(Stack) : end}]

∆ ` x.push(2) : void a ∆1

∆ ` x.push(2); x : Stack[S ] a ∆0
Seq

C.3 Method Call
Consider the code

s = c.pushN(s)

with input context ∆0 = s : Stack[S ], c : StackUser[{Stack popAll(Stack) : end}]. The derivation tree for the above code is:

c pushN(Stack x) {x.push(2); x} ∈ methods(StackUser)
Seq
Stack pushN(Stack) method body inference

∆2 = ∆1, x : Stack[{void push(int) : S }]
∆2 ` (x.push(2); x){c/this} : Stack[S ] a ∆1
PathR

∆3 = s : Stack[{void push(int) : S }],
c : StackUser[{Stack popAll(Stack) : end}]
∆3 ` s : Stack[{void push(int) : S }] a ∆2

∆ = s : Stack[{void push(int) : S }],
c : StackUser[{Stack pushN(Stack) : {Stack popAll(Stack) : end}}]

∆ ` c.pushN(s) : Stack[S ] a ∆1
Call

∆1 = s : Stack[end], c : StackUser[{Stack popAll(Stack) : end}], x : Stack[end]
∆ ` s = c.pushN(s) : void a ∆0

AsgnR

C.4 Class inference
The inference tree for class StackUser is:

Class
Set-St
Method-St

LExpr
Stack popAll(Stack) method body inference

∆1 = x : Stack[µX.{S , int pop() : X}], this : StackUser[end]
∆1 ` Stack popAll(Stack x) {loop : e} : U a this : StackUser[end]

End-St

` StackUser[end]
` StackUser[Stack popAll(Stack) : end]

Method-St

` StackUser[{Stack popAll(Stack) : end}]
Set-St

Seq
Stack pushN(Stack) method body inference

∆2 = x : Stack[{void push(int) : S }], this : StackUser[{Stack popAll(Stack) : end}]
∆2 ` Stack pushN(Stack x) {x.push(2); x} : U a this : StackUser[{Stack popAll(Stack) : end}]

` StackUser[Stack pushN(Stack) : {Stack popAll(Stack) : end}]
` StackUser[{Stack pushN(Stack) : {Stack popAll(Stack) : end}}]

` StackUser
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