Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe

Al-Kayiem, A. and Yu, Z. (2016) Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe. Energy, 112, pp. 111-120. (doi:10.1016/

119951.pdf - Accepted Version



A new configuration (“a looped-tube with a bypass pipe”) was recently proposed for low temperature travelling wave thermoacoustic engines and a prototype using atmospheric air as the working gas achieved an onset temperature difference as low as 65 °C. However, no further research has been reported about this new configuration to reveal its advantages and disadvantages. This paper aims to analyse this type of engine through a comprehensive numerical research. An engine of this type having dimensions similar to the reported prototype was firstly modelled. The calculated results were then qualitatively compared with the reported experimental data, showing a good agreement. The working principle of the engine was demonstrated and analysed. The research results show that an engine with such a bypass configuration essentially operates on the same thermodynamic principle as other travelling wave thermoacoustic engines, differing only in the design of the acoustic resonator. Both extremely short regenerators and a near-travelling wave resonator minimise the engine’s acoustic losses, and thus significantly reduce its onset temperature difference. However, such short regenerators likely cause severe heat conduction losses, especially if the engine is applied to heat sources with higher temperatures. Furthermore, the acoustic power flowing back to the engine core is relatively low, while a large stream of acoustic power has to propagate within its resonator to maintain an acoustic resonance, potentially leading to low power density. The model was then applied to design an engine with a much longer regenerator and higher mean pressure to increase its power density. A thermoacoustic cooler was also added to the engine to utilise its acoustic power, allowing the evaluation of thermal efficiency. The pros and cons of the engine configuration are then discussed.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Yu, Professor Zhibin
Authors: Al-Kayiem, A., and Yu, Z.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Energy
Published Online:18 June 2016
Copyright Holders:Copyright © 2016 Elsevier
First Published:First published in Energy 112:111-120
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record