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Abstract

Many chemometric tools are invaluable and have proven effective in data mining

and substantial dimensionality reduction of highly multivariate data. This be-

comes vital for interpreting various physicochemical data due to rapid develop-

ment of advanced analytical techniques, delivering much information in a single

measurement run. This concerns especially spectra, which are frequently used

as the subject of comparative analysis in e.g. forensic sciences. In the presented

study the microtraces collected from the scenarios of hit-and-run accidents were

analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp

lenses) were subjected to Fourier transform infrared spectrometry and car paints

were analysed using Raman spectroscopy. In the forensic context analytical re-

sults must be interpreted and reported according to the standards of the inter-

pretation schemes acknowledged in forensic sciences using the likelihood ratio

approach. However, for proper construction of LR models for highly multivari-
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ate data, such as spectra, chemometric tools must be employed for substantial

data compression. Conversion from classical feature representation to distance

representation was proposed for revealing hidden data peculiarities and linear

discriminant analysis was further applied for minimising the within-samples

variability while maximising the between-samples variability. Both techniques

enabled substantial reduction of data dimensionality. Univariate and multivari-

ate likelihood ratio models were proposed for such data. It was shown that the

combination of chemometric tools and the likelihood ratio approach is capable

of solving the comparison problem of highly multivariate and correlated data

after proper extraction of the most relevant features and variance information

hidden in the data structure.

Keywords: dimension reduction, likelihood ratio, infrared and Raman

spectroscopy, polymer, car paint, forensic science

1. Introduction

Recent developments in the field of instrumental analytical chemistry enable

recording of many physicochemical features which extensively characterise the

analysed samples in one single measurement. Spectroscopic methods are ex-

amples of such. Such techniques, generating the signal reflecting the nature of5

interaction between sample and light (e.g. intensity of absorbed, scattered or re-

flected light), are frequently applied for investigating the chemical features (e.g.

functional groups) of the samples, often with complex chemical composition of

the matrices.

Many scientific fields consider spectroscopic data as the basis of compara-10

tive analysis. It is also the case in the forensic sciences, where spectroscopy is

employed for characterising for example plastics used for car body elements pro-

duction (e.g. bumpers, headlamp lenses) and automotive paints collected from

the scenarios of hit-and-run car accidents. Fourier transform infrared spectrom-

etry (FTIR) can be applied for characterising organic compounds of polymers15

while Raman spectroscopy (RS) may be utilised for pigments identification in
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car paints. For making inferences about the connections between the scene of

a car accident and the suspected car, the spectra of the material collected from

the car accident scenario (so-called recovered samples, whose source is unknown)

are compared with the spectra of the known-source control material collected20

e.g. from the suspected car. Even though forensic scenarios are the illustra-

tive examples used here in discussing the methodology for solving the so-called

comparison problem, the workflow may be utilized in any field of chemistry,

where the issue of comparing physicochemical features is raised. Moreover, any

scientist with a specialist knowledge in some field can be asked by the court25

representatives to express an opinion on the casework. The analytical results

must then be interpreted and reported according to the standards of the inter-

pretation schemes acknowledged in forensic sciences [1].

Visual overlying of the spectra is unfortunately still the most frequent method

for commenting on their similarity. However, despite focusing on the discrepan-30

cies in the spectras’ general shapes and location of absorption bands, peaks etc.,

such a naked-eye comparison can only be credible for visually distinguishable

spectra. In the case of very similar spectra, the resulting conclusion must be

supported by more reliable tools. Moreover, when the comparison problem is ad-

dressed in the forensic sciences, the evidential value of the observed similarities35

and differences in the spectra must be reported. This can be expressed by the

likelihood ratio (LR) approach being a well documented method for assessing

the evidential value of the physicochemical data [2, 3, 4].

LR expresses the data in the context of two contrasting hypotheses. In the

comparison problem they may state that:40

• H1: compared recovered and control materials come from the same source

(e.g. suspected car),

• H2: compared recovered and control materials do not come from the same

source.

Due to its dichotomic nature, LR can be regarded as a reliable and objec-45

tive test for making inference about the common provenance of the compared
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samples based on their physicochemical data by investigating the data from two

contrasting perspectives given by the LR expression:

LR =
Pr(E|H1)

Pr(E|H2)
. (1)

Values of LR above 1 support H1, while values of LR less than 1 support

H2. A value of LR equal to 1 does not provide support for either proposition.50

The strength of support towards each of the hypotheses is determined by the

LR value itself. The larger (lower) the value of LR, the stronger the support for

H1 (H2).

When the LR is computed for original features such as for instance elemental

content of the samples (so called feature-based approach) it accounts for:55

• the similarity of the features,

• the rarity of the observed features,

• the sources of uncertainty including the within- and between-objects (sam-

ples) variability in the relevant population (e.g. plastics or car paints),

• correlation between the measured features.60

Including the rarity information is what makes the LR approach more suitable

for assessing the evidential value than any other tests for comparing two datasets

such as the t-test. The LR assigns greater support for the relevant hypothesis

when the similarity is observed between rare features than when it is detected

for quite common characteristics. It is worth noting that for the models in65

which features are replaced by e.g. distances between samples (so called score-

based approach [5, 6, 7]) the rarity refers rather to the frequency of observing

a particular distance than a feature.

LR models are widely developed and easily constructed for data sets de-

scribed by a limited number of variables such as in the case of glass frag-70

ments characterised by their elemental composition [3] concerning only oxygen,

sodium, magnesium, aluminium, silicon, potassium, calcium and iron. Simi-

larly to most of the methods strongly embedded in statistics, LR also reveals
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some limitations when dealing with highly multidimensional data, such as spec-

tra. The main problem relates to the inability to reliably estimate the relevant75

parameters for LR calculations (means, variances, covariances) for data sets

consisting of less samples than the number of variables they are described by.

This issue is known as the curse of dimensionality.

Representing the spectra in the form of the so-called peaks table comprising

of the areas below the limited number of spectra peaks is the easiest way for80

reducing their dimensionality [8]. However, this method seems to be quite time-

consuming and too subjective, causing some troubles especially when establish-

ing the boundaries of the peaks. Moreover, for some spectroscopic methods it

becomes difficult to exactly identify the chemical compound responsible for the

specific peak appearance.85

A more convenient solution may be investigation of the dependencies be-

tween variables allowing for grouping them in clusters of highly correlated vari-

ables. This idea is the basis of graphical models, which in the forensic field are

extensively used for glass elemental composition data [3, 9, 10]. In the presented

approach the multidimensional problems were split into multiple problems of90

lower dimensions, for which LR models are more credible. However, the applied

methodology is only successful for the physicochemical data sets described by

only a few variables [3, 11]. Even though application of the graphical models

is reported also for highly multivariate data [12, 13], the LR models based on

their outcomes may not be reliable enough for legal processing.95

The so-called näıve LR approach [14, 15] was also applied to various kinds

of physicochemical data described by many variables. It assumes that the final

LR value can be easily computed by multiplying all univariate LR values based

on each of the variables. The justified criticism of this approach stems from the

fact that it ignores the correlations between the variables. The issues with this100

misuse are more severe, the higher the correlation is.

In contrast to pure statistical tools, chemometrics enable investigators to

extract the most relevant features from complex structured data in the original

multidimensional space and represent them compactly in the form of a limited
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number of variables. Therefore, the application of chemometric tools in the105

forensic science has been gaining importance in recent years [16, 17, 15, 14,

18, 19, 20]. In spite of their usefulness in the field of data mining, outcomes

of chemometric tools cannot be directly translated and interpreted for forensic

purposes, as they do not always account for all essential aspects listed above

(e.g. physicochemical features rarity information, within- and between-object110

sources of variability and correlation structure). These, in turn, are addressed in

likelihood ratio approach. However, to the authors’ best knowledge, hardly any

publications can be found in the literature that discuss the issue of an application

of LR models accompanied by chemometric tools for highly multidimensional

data such as spectra.115

In [21] wavelets [22, 23, 24] were proposed for representing the spectra in a

shorter form of reduced number of wavelet transform coefficients, for which uni-

variate and multivariate LR models were constructed. The method focuses on

the local spectra features as for example bands associated with particular bond

vibrations, which are especially important from the chemical perspective. Limit-120

ing the relevant spectra features to those extracted from the wavelet transform

may preserve sufficient information by keeping the spectra original shape de-

prived of irrelevant details. Even though the wavelet transform was effective in

solving the comparison problem of spectra within FTIR database of polypropy-

lene samples and Raman spectra database of car paints [21], the authors aim to125

study other chemometric methods also regarded as useful in dealing with high

dimensionality data.

In this work, various aspects of hidden data structure were addressed using

a sequence of chemometric techniques, the outcome of which was adopted as

the input for LR models. The studies presented herein were aimed at verifying130

the suitability of joining distance representation and linear discriminant analysis

for generating lower dimensional data without ignoring relevant data features.

The objective was to construct LR models for the comparison problem of FTIR

spectra for polypropylene and Raman spectra of solid and metallic car paints.

The presented LR model can be viewed as a hybrid between feature and score135
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based models, as each object becomes described by a set of distances (scores)

from the reference samples, acting now as new features. For clarity, the com-

puted scores do not refer to the pairwise distances between compared samples,

but constitute vectors of characteristics describing the proximity of each sam-

ple to the preselected prototypes (section 2.2.2). Moreover it is worth noting140

that linear discriminant analysis, a method developed and commonly used for

classification, is applied here to the comparison problem.

2. Materials and methods

2.1. Samples and equipment

Eleven polypropylene samples (also containing traces of other compounds145

such as polyethylene) used for the production of car body elements (e.g. bumpers,

headlamp lenses) were the subject of Fourier transform infrared spectrometry

analysis. Additionally FTIR spectra were recorded for 13 polypropylene con-

tainers which were packages for products commonly used in our daily lives (e.g.

cosmetics). Due to the high probability of their occurrence on the scene of150

investigation (e.g. car accident), they supplemented the database. The true

distribution of the non-vehicle and vehicle samples is unknown, however, more

or less equal proportions for both groups were assumed. To the authors’ best

knowledge there is no substantial difference between the frequency of collect-

ing the automotive plastics and containers found on the scene of car accident.155

Both materials are more or less equally likely to occur, which is the assumption

followed in the research.

The FTIR signal was collected in the range 600-4000 cm−1 and for the

purpose of calculations was limited to only 700-3000 cm−1, capturing all the

relevant chemical information. The equipment used was an FTS 40Pro Fourier160

transform infrared spectrometer (Bio-Rad/Digilab, Marlborough, MA), coupled

with a UMA 500 microscope. For each of the 24 samples three FTIR spectra

in the transmission mode were recorded from four distinct parts of the samples

(with a total of n = 12 measurements per sample).
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Thirty solid and 30 metallic blue car paints originating from bodies of dam-165

aged cars were subjected to Raman spectroscopy using a Renishaw inVia spec-

trometer equipped with a Leica microscope and near infrared semiconductor

laser (785 nm) as an excitation source. The laser beam was focused on samples

by 50x (N.A=0.75) objective lens, which gives a theoretical spot size of approx-

imately 2 µm. The laser power applied while recording Raman spectra used 1%170

or 0.5% of its maximum power (300±30 mW). The spectrometer collected light

in the back-scattering mode, which was dispersed on a 1200 grooves/mm grat-

ing and was focused on a Peltier-cooled charged coupled device (CCD). Spectral

data was processed with Renishaw Wire 3.2 software. Spectra of all samples

were recorded in situ in the region of 200-2500 cm−1 with an acquisition time175

of 10 s and collection of five accumulations. For the purpose of the calculations

within this research the spectrum range was finally limited to 380-2300 cm−1,

which still covered all the relevant pigments Raman bands. Each paint sample

was measured in three to seven spots.
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Figure 1: Examples of (a) FTIR polypropylene spectra, (b) Raman solid car paint spectrum

before (black) and after (red) the baseline removal using the continuous wavelet transform.

2.2. Chemometric and statistical tools180

The comparison problem of the recorded spectra was addressed for samples

within each of the three databases:
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1. 24× 12 = 288 FTIR spectra recorded for 24 polypropylene samples (con-

taining some additional compounds, e.g. polyethylene) from car body

parts (headlamp lenses, bumpers) and plastic containers,185

2. 100 Raman spectra recorded for 30 blue solid automotive paints,

3. 97 Raman spectra recorded for 30 blue metallic automotive paints.

2.2.1. Signal preprocessing

FTIR polypropylene spectra

For the sake of making all of the spectra comparable (Figure 1a) despite190

the varying thicknesses of samples, each of the 288 FTIR spectra recorded for

24 polypropylene samples in the range 700-3000 cm−1 was normalised using

the standard normal variate (SNV) method [25]. SNV was proposed as a nor-

malisation technique due to its independence of the whole database in contrast

to other often applied techniques such as multiplicative scatter correction or195

probabilistic quotient normalisation [25].

Raman solid and metallic car paints spectra

Each single recorded Raman spectrum constituted the set of data points

measured for a series of wavenumbers. Due to indivertible instrumental set-

tings, the set of wavenumbers by which Raman signal intensities were measured200

differed between spectra. The sequence demonstrated changeable starting and

ending points and varying step between subsequent elements. Such an inconve-

nience precludes the application of various statistical or chemometric methods

aiming at interpreting the spectra similarity as they are only suitable for mak-

ing inferences when samples are described by the same sets of variables (here:205

wavenumbers). This needed to be sorted out by reconstructing the spectra

so that they reflect the Raman signal intensities measured by equally spaced

wavenumbers, consistent between spectra. 1024 data points sampled every ca.

2.053 cm−1 were supposed to be generated in the reconstructed spectra spanning

the range of 200-2300 cm−1. Spline functions [26] with cubic polynomials were210

used for interpolating (fitting) the spectrum and finding the Raman intensities
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for the new set of 1024 equally spaced wavenumbers.

Most of the Raman spectra were distorted by a fluorescence effect lifting

the baseline, which made them difficult to interpret. To deal with the problem,

the continuous wavelet transform (CWT) was applied for each of the analysed215

spectra separately (Figure 1b). Thanks to the CWT properties, the true sig-

nal can be successfully separated from the low frequency background (mainly

attributed to the fluorescence effect) [27]. The baseline drift of each individual

spectrum was removed using the Mexican hat wavelet [22] with the same set

of CWT parameters for each spectrum (Fig. 1b). The reason for creating the220

number of 1024 points per spectrum in the reconstruction step was the CWT,

which operates on 2N long signals.

For the sake of calculations the spectra were limited to the range 380-2300

cm−1 in order to exclude the initial part of spectrum for which CWT hardly

managed to separate the baseline from the true signal. They were then nor-225

malised using the standard normal variate (SNV) method.

2.2.2. Reduction of data dimensionality

Each of the three databases consists of m objects (for FTIR spectra it is

mIR = 24, for solid and metallic Raman spectra databases mR = 30), each

measured ni times (ni is constant, n = 12, for FTIR spectra database and differs230

between 3 and 7 in Raman spectra databases) and described by ν variables

(understood as signal intensities measured for a set of ν wavenumbers). After

preprocessing steps (see section 2.2.1) the FTIR polypropylene spectra database

is a matrix of size 288 spectra × 1193 variables (signal intensities measured by

1193 wavenumbers), the solid car paints Raman spectra database is a matrix of235

size 100×936 and the metallic car paints Raman spectra database is a matrix

of size 97×936.

The most natural and powerful way for reducing the dimensionality of physic-

ochemical data is by principal component analysis (PCA). Despite of its great

capability for effective dimension reduction, the main disadvantage of the PCA is240

that it fails in distinguishing between the within- and between samples variabil-
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ity as illustrated in Figure 2. Its aim is to search for the directions that maximise

the overall variance of the data without considering any division into various

objects described by multiple spectra (dashed red line in Figure 2). As a conse-

quence the generated space is not optimal for maximising the between-objects245

variability while minimising the within-objects variability. Since LR models

perform effectively only when the between-object variance is much greater than

the within-object variance, preserving the relation C ≫ U is crucial from the

perspective of LR model efficacy. Here C denotes the between-sample variance-

covariance matrix (Equation 6) and U the within-sample variance-covariance250

matrix (Equation 5). Otherwise, the distributions of the variables describing

objects overlap, making it difficult to distinguish between them.

Furthermore a dataset of samples characteristic features (e.g. in the form

of spectra) may not always be the most straightforward and informative. Deal-

ing with so many variables (features) as the number of wavenumbers for which255

intensities of spectroscopic signals were measured is both inconvenient and pre-

vents easy observation of the genuine spectra similarities and differences. As

suggested in [28, 29, 30] the so-called distance representation has many advan-

tages over classical feature representation. It not only enables for substantial

data compression, but also easily copes with the non-linear problems [28]. Nev-260

ertheless, the methodology causes some information loss especially regarding

the influence of the original features on the results but it is always a matter

of finding a compromise between losing some information and reducing data

dimensionality so that they are adjusted to further processing steps. Applying

data dimensionality reduction techniques may deteriorate the results when ap-265

plied prior to the classification [31], however, in the case of spectra initial data

dimensionality reduction is absolutely inevitable as without this step hardly any

method for their evaluation can be used, the likelihood ratio approach at all.

Therefore using distance representation instead of feature space must be con-

sidered as a quid pro quo methodology, which is assumed to preserve enough270

information for solving the stated problem.

In the distance representation approach, each sample is described by the
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distance measure (Manhattan, Euclidean, etc.) from the predefined reference

samples (e.g. mean spectrum, reference material spectrum). Then the matrix

originally containing P wavenumbers by which intensities were measured for275

M spectra (matrix size M × P ) is reduced to a matrix of M × R, where R

stands for the number of reference samples spectra the distances are measured

to. In distance representation each sample (spectrum) is described by features

that are its distances to the reference objects. In the presented research the

suitability of five different distance metrics including Manhattan, Euclidean,280

squared Euclidean, correlation-based and Chebyshev distance was examined.

The correlation based distance metric between two spectra A and B is calculated

as 1 − rAB , where rAB is the Pearson’s correlation coefficient between the two

spectra. For this reason the values it takes fall between 0 and 2, whereas the

remaining considered distance metrics produce non-negative values.285

x1

x 2

PC1

LD

object 1

object 2

Figure 2: The illustration of differences between the variance aspects PCA and LDA address.

However, for meeting the condition of much greater between- than within-

objects variability, C ≫ U, linear discriminant analysis (LDA) [32] was applied

to data in distance representation prior to LR models construction. Even though

the method is known for classification purposes, it can be successfully applied

for maximising the ratio of between- to within-object variabilities (instead of290

between- to within-class variabilities) when objects are regarded as separate

classes. Such an approach enables finding the best direction in which the vari-
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Figure 3: The scheme illustrating the validation procedure for (a) FTIR polypropylene spectra

database, (b) Raman solid or metallic car paints databases. Notation: m-number of objects,

N0 - number of original spectra in the considered FTIR and Raman spectra databases (sub-

scripts test and train refer to the test and training sets respectively), ni-number of multiple

spectra recorded for each of m samples (constant for FTIR spectra database, ni = 12 and

varying between 3 and 7 for Raman spectra databases), p-number of variables considered at

each step indicated by a subscript.
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ance related to the differences between objects is captured and the random

within-object variability is diminished (solid blue line in Figure 2). LDA can

be used for compressing data as new directions are found in the sequence of295

decreasing ratio of between- to within-classes (here objects) variance. There-

fore accounting for first few LDs will enable for capturing the greatest part

of variance associated with data grouping. LDA has also one more advantage

stemming from the fact that eigenvectors (LDA directions) are scaled to gen-

erate unit within-object variances. This is seen as an additional merit, since300

LR models also assume the same and constant within-object variance for all

objects.

As a consequence, LDA enabled for further substantial reduction of data

dimensionality in distance representation. The projections of the data on lin-

ear discriminant directions were further considered as variables for LR models305

construction.

According to the mathematical principles of LDA, the projections represent-

ing the spectra in the LDA space are both orthogonal and uncorrelated. This

property enables adopting the easiest solution to create multivariate LR models

(section 2.2.3). The idea is to convert the p-dimensional problem into p uni-310

variate models. The solution involves the construction of univariate LR models

based on single linear discriminants (LDs) and their multiplication for getting

the final LR value (Figures 3 and 4, Equations 2-4). Such an approach is known

as näıve, in which it is assumed that the contribution of each of the variables in

the support for the relevant hypothesis (H1 or H2) is independent of the other315

variables. Its only limitation relates to the assumption of the lack of correlation

between the variables and escalates with increasing correlation [6, 18]. However,

for the examined data, the assumption still holds thanks to orthogonalisation

and centering of the LDA space. The näıve LR models constructed from LDs

are only reasonable when they account for the LDs with the greatest ability to320

distinguish between all samples. For selecting such LDs the algorithm proposed

by Raftery and Dean in [33] was applied. It is based on the use of the Bayes

factor and Bayesian Information Criterion (BIC) for selecting the variables with
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the greatest ability to put each single sample into a separate group [33, 34]. The

algorithm selects LDs by iteratively proposing keeping/removing an LD one at325

a time. Through a stepwise procedure, each LD is considered for retention or

removal from consideration given the set of LDs already retained. BIC scores

are used to compare the model where the LD under consideration is assumed

to show clustering in the data (where clustering indicates grouping replicate

measurements of samples into groups which are regarded as separate samples)330

along with the other currently retained LDs and the competing model where

the already retained LDs provide clustering but the LD under consideration has

a non-clustering model. This comparison basically indicates whether the new

LD provides an improvement in separating the samples over and above the LDs

already selected. Since the same set of LDs is being used in both models, the335

BIC scores can be compared and the model that represents the best BIC score

will indicate the relevant decision to be made regarding retention or removal of

the LD of interest. Iterating this procedure until convergence results in a set of

selected LDs.

The studies examined the performance of the following näıve LR models:340

• univariate LR models:

LR(LDBIC1) (2)

• bivariate LR models:

LR(LDBIC1) · LR(LDBIC2) (3)

• trivariate LR models:

LR(LDBIC1) · LR(LDBIC2) · LR(LDBIC3) (4)

Validation of the procedure

Two different approaches were applied for creating the training and test sets345

for validation purposes (Figure 3):
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• for the FTIR polypropylene spectra database there were s = 100 training

and test sets randomly generated using the leave-p-out method. In each

iteration 4 randomly selected spectra from each of the mIR samples were

averaged and constituted a set of mIR reference spectra. Another 4 ran-350

domly selected spectra recorded for each of the mIR samples formed the

training set for LDA space construction. The remaining 4 from each sam-

ple formed the test set for LR models (Figure 3a). Both training and test

sets consisted of m = 24 exactly the same samples, but different measure-

ments. Finally, the test and training sets in distance representation were355

matrices of size 4·24=96×24 since the distances from 96 spectra were com-

puted to 24 averaged reference spectra. LDA performed on the training set

reduced the number of variables to the minimum of the number of groups

(here samples, whose number is equal to 24) minus one and the number

of variables, which is 24. This produces 24-1=23 new orthogonal features.360

The final test set matrix used in the LR calculations was developed by

applying the LDA model parameters on the distance representation of the

test set spectra and was described by 96 rows referring to the spectra of

the 24 samples and 23 columns referring to linear discriminant directions

acting as new variables.365

• for the Raman car paints spectra databases, due to limited and differing

number of spectra recorded for each car paint sample (so-called unbal-

anced data), the validation sets were constructed in a samples-driven way.

Ten samples spectra were randomly selected and averaged to create 10 ref-

erence spectra, the training set consisted of 10 randomly selected car paint370

samples (with all their spectra) and the 10 samples left formed the test set

(Figure 3b). Such test and training sets were created s = 100 times. Since

the number of spectra recorded for each sample (ni) differs, the dimen-

sionalities of test and training sets are not straightforward. Nevertheless,

the test and training sets in distance representation were matrices of size375

10·ni×10 since the distances from 10·ni spectra were computed to 10 av-
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eraged reference spectra. LDA performed on the training set reduced the

number of variables to the minimum of the number of groups (here sam-

ples, whose number is equal to 10) minus one and the number of variables,

which is 10. This produces 10-1=9 new orthogonal features. The final test380

set matrix was developed by applying the LDA model parameters on the

distance representation of the test set spectra and was described by 10·ni

rows referring to the spectra of the 10 samples and 9 columns referring to

the linear discriminant directions acting as new variables.

The relevant dimensionality of the FTIR and Raman databases in the dis-385

tance representation and after performing LDA is given schematically in Figure

3. From now on these matrices of lower dimensions will serve as databases for

LR models construction.

2.2.3. Likelihood ratio

In each of s = 100 iterations (for validating LDA models) one final test set390

was constructed separately for FTIR and Raman databases. This test set is

supposed to be the foundation for LR models construction. For validating the

LR models new training and test sets were derived from the final test sets of

FTIR and Raman data matrices after performing LDA on the spectra distance

representation. When different samples were under comparison, they consti-395

tuted a single LR test set. The corresponding LR training set for estimating

the LR models parameters (means, variances, covariances) consisted of the re-

maining samples. The procedure was repeated until all possible comparisons in

the database were completed (including comparison of data for the two samples

coming from the same object). New defined LR test and training sets will be400

denoted with relevant subscripts.

Each i-th (i = 1, . . . ,mtrain) object from the training set is described by ni

vectors (j = 1, . . . , ni) containing data of p variables being projections of dis-

tance representations of spectra on the linear discriminants, xij = (xij1, . . . , xijp)
T
.

Their number is equal to p = m = 24 for FTIR spectra database and p = 10 for405

Raman spectra databases.

17



The mean vector of p variables for each object is given as x̄i =
1
ni

∑ni

j=1 xij .

The overall mean µ is estimated from x̄ = 1
N

∑mtrain

i=1 nix̄i, whereN =
∑mtrain

i=1 ni.

The distribution of xij given x̄i is assumed normal and characterised by the

within-object variance U that is for all objects equal: (xij |x̄i,U) ∼ N (x̄i,U).410

The within-object variance-covariance estimate (Û) is expressed by:

Û =
1

N

m∑
i=1

ni

ni − 1
Swi, (5)

where:

Swi =

ni∑
j=1

(xij − x̄i) (xij − x̄i)
T
.

The objects means x̄i are distributed around µ estimated as x̄ with dispersion

given by the between-object variability (C). The distribution can be assumed

normal (x̄i|µ,C) ∼ N (µ,C) or is estimated by kernel density estimation (KDE)

procedure using Gaussian kernels with bandwidth parameter calculated as h =415 (
4

mtrain(2p+1)

) 1
p+4

[35].

The between-object variance-covariance estimate (Ĉ) is expressed as:

Ĉ =
N

N2 −
∑mtrain

i=1 n2
i

(
Sb − (mtrain − 1)Û

)
, (6)

where:

Sb =

mtrain∑
i=1

ni (x̄i − x̄) (x̄i − x̄)
T
.

LR models constructed using the parameters (U, C, µ, x̄i, x̄, h) estimated

from the training set are subsequently applied for comparing each two objects420

from the test set, known as recovered and control samples.

For control object y1 there are k1 observations of the p variables:

y1j = (y1j1, . . . , y1jp)
T

with mean vector ȳ1 = 1
k1

∑k1

j=1 y1j , coming from normal distribution (ȳ1|µ,U,C) ∼

N
(
µ, U

k1
+C

)
.
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For recovered object y2 there are k2 observations of the p variables:

y2j = (y2j1, . . . , y2jp)
T

with mean vector ȳ2 = 1
k2

∑k2

j=1 y2j , coming from normal distribution (ȳ2|µ,U,C) ∼

N
(
µ, U

k2
+C

)
.425

The weighted mean of ȳ1 and ȳ2 is given as ȳ∗ = k1ȳ1+k2ȳ2

k1+k2
and comes from

normal distribution (ȳ∗|µ,U,C) ∼ N
(
µ, U

k1+k2
+C

)
.

In the case of univariate data all matrices or vectors in LR expressions be-

come scalars, e.g. U becomes u2 and x̄ is reduced to x̄.

In the LR numerator it is assumed that the compared samples originate430

from the same object (H1). Thus, it can be shown that the numerator can

be expressed by explicitly taking into account the evaluation of the difference

of physicochemical data between compared objects, as well as their rarity, the

latter being expressed by the distance of the weighted mean ȳ∗ from the overall

mean x̄.435

Therefore, when kernel density estimation is applied for modelling the between-
object distribution, the numerator could be expressed by [4, 2, 36]:

f(ȳ1, ȳ2|U,C, x̄, H1) = f(ȳ1 − ȳ2|U, H1) ×
1

mtrain

mtrain∑
i=1

K(ȳ
∗|x̄i,U,C, h,H1) =

= (2π)
−p/2

∣∣∣∣ Uk1

+
U

k2

∣∣∣∣− 1
2
exp

{
−

1

2
(ȳ1 − ȳ2)

T

(
U

k1

+
U

k2

)−1

(ȳ1 − ȳ2)

}
×

×(2π)
−p/2

∣∣∣∣ U

k1 + k2

+ h
2
C

∣∣∣∣− 1
2 1

mtrain

mtrain∑
i=1

exp

{
−

1

2
(ȳ

∗ − x̄i)
T

(
U

k1 + k2

+ h
2
C

)−1

(ȳ
∗ − x̄i)

}
.

(7)

In the denominator of the likelihood ratio, ȳ1 and ȳ2 are taken to be inde-
pendent as the data are assumed to originate from different objects (H2). When
KDE is applied for modelling the between-object distribution, it takes the form440

[4, 2, 36]:

f(ȳ1, ȳ2|U,C, x̄, H2) =
1

mtrain

mtrain∑
i=1

f(ȳ1|x̄i,U,C, h,H2) ×
1

mtrain

mtrain∑
i=1

f(ȳ2|x̄i,U,C, h,H2) =

= (2π)
−p/2

∣∣∣∣ Uk1

+ h
2
C

∣∣∣∣− 1
2 1

mtrain

mtrain∑
i=1

exp

{
−

1

2
(ȳ1 − x̄i)

T

(
U

k1

+ h
2
C

)−1

(ȳ1 − x̄i)

}
×

×(2π)
−p/2

∣∣∣∣ Uk2

+ h
2
C

∣∣∣∣− 1
2 1

mtrain

mtrain∑
i=1

exp

{
−

1

2
(ȳ2 − x̄i)

T

(
U

k2

+ h
2
C

)−1

(ȳ2 − x̄i)

}
.

(8)
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mtest

test set after LDA

LR

p

univariate LR models

s=100
s=100

…

s=100

true H1 LR values

true H2 LR values

mtest mtest mtest
ni

s=100

mtest mtest mtest

parameters, e.g. means, 
variances, derived from 
validation procedure (see
text) 

bivariate LR models p-variate LR models

Figure 4: The structure of the symmetric matrices of LR results (size mtest × mtest, where

mtest refers to the number of objects in the test set of FTIR or Raman spectra databases after

LDA, Figure 3) obtained for each of the s = 100 test sets within particular näıve LR models.

The diagonals of the matrices archive the true H1 LR values (expected to be greater than 1) for

comparing the objects sharing the same origins (estimation of false negative answers), whereas

gray areas below or above the diagonals store the true H2 LR values (expected to be lower

than 1) for comparing the objects with different origins (estimation of false positive answers).

ni refers to the number of multiple spectra recorded for each of mtest samples (constant for

FTIR spectra database, ni = 12, and varying between 3 and 7 for Raman spectra databases),

p denotes the number of variables considered after performing LDA.
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2.2.4. Assessing the LR models performance - false positive and false negative

rates and empirical cross entropy approach

When constructing new LR models, special care should be taken for assess-

ing their performance and correctness of the yielded results. Providing the levels445

of correct LR models responses belongs to the most coarse methods for com-

menting on the LR models effectiveness. In the proposed research the levels of

false positive and false negative answers were under examination [4]. For their

estimation the following comparisons were simulated:

(1) LR is computed for two samples sharing common origin, i.e. one sam-450

ple from the test set was split into two samples (one acting as recovered

and the second one as control sample). The samples with even number

of spectra were divided into two equally numerous parts. For samples

with odd number of spectra, the control sample consisted of one more

observation than the recovered one. The correct model response should455

support H1 (hence LR > 1). Each value of LR < 1 is then a false negative

answer. The number of comparisons performed within this experiment is

then N1 = mIR = 24 for each of s = 100 test sets of FTIR polypropylene

spectra and N1 = mR,test = 10 for Raman spectra databases.

(2) LR is computed for each two objects from the test set. Since they do not460

share common origin, H2 should be supported (hence LR < 1) and each

value supporting the H1 (LR > 1) is known as the false positive answer.

Total number of the comparisons performed in this experiment for each of

s = 100 test sets is given by N2 = mIR·(mIR−1)
2 = 24·(24−1)

2 = 276 for each

test set of FTIR polypropylene spectra and N2 =
mR,test·(mR,test−1)

2 =465

10·(10−1)
2 = 45 for Raman spectra databases.

When considering only the levels of false positive and false negative answers

the information concerning the strength of the support for particular hypothesis

is hidden. For instance, false positive answers of LR = 5 and LR = 500 are

both regarded in favour of H1, even though the strength of the support towards470

this hypothesis varies significantly for both values. Therefore, information on
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false positive and false negative rates is usually insufficient for portraying an

extensive and credible assessment of the performance of the LR models.

In hypothesis testing it is not only desirable to support the correct hypoth-

esis but also that this support should be as strong as possible (i.e. LR >> 1475

when H1 is correct and LR << 1 when H2 is correct). If an incorrect hypothesis

is supported by LR value (i.e. LR < 1 when H1 is true and LR > 1 when H2 is

true) then LR value should concentrate around 1, supporting the incorrect hy-

pothesis very weakly. Therefore LR models, capable of pointing out the strength

of support towards one of the hypotheses, should be extensively exploited by480

taking advantage of this information, instead of only the indication of the sup-

ported hypothesis. This information is crucial from the perspective of Bayesian

theory (Equation 9), in which LR values modify the prior assumptions (Pr(H1)

and Pr(H2)) about the evidence stated before its analysis. Such a modification

generates final results in the form of ratio of conditional probabilities Pr(H1|E)485

and Pr(H2|E), namely posterior probabilities.

Pr(H1)

Pr(H2)
· Pr(E|H1)

Pr(E|H2)
=

Pr(H1)

Pr(H2)
· LR =

Pr(H1|E)

Pr(H2|E)
. (9)

Bayes theorem became the foundation of the empirical cross entropy (ECE)

approach for assessing the LR models performance enclosing the values of LR,

prior and posterior probabilities [37, 38, 10, 9, 4]. It is a method based upon

the system of rewarding and penalising the obtained LR values. The LR models490

responses supporting the incorrect hypothesis are penalised according to loga-

rithmic strictly proper scoring rules (Fig. 5a). The higher the support for the

incorrect hypothesis, the greater penalty is assigned to the model’s response,

i.e. − log2 Pr(H1|E), when H1 is true and − log2 Pr(H2|E), when H2 is true.

The ECE as a proper measure of performance is then proposed by taking into495

account the mean penalties computed fromN1 andN2 experiments performed in

the aim to estimate the rates of false negative and false positive answers (under

H1 and H2 hypotheses), which are weighted by the relevant prior probabilities

Pr(H1) and Pr(H2):
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Figure 5: (a) Logarithmic strictly proper scoring rules, (b) empirical cross entropy (ECE) plot

(description in the text).

ECE =
Pr(H1)

N1

N1∑
i=1

log2

[
1 +

Pr(H2)

LRi Pr(H1)

]
+

Pr(H2)

N2

N2∑
j=1

log2

[
1 +

LRj Pr(H1)

Pr(H2)

]
. (10)

The ECE is computed for the set of possible prior probability quotients500

Pr(H1)/Pr(H2) since assigning any particular values to the a priori probabil-

ities Pr(H1) and Pr(H2) is not the task of the forensic expert. Therefore the

ECE outcome is illustrated in the form of a diagram presenting the ECE values

for a set of Pr(H1)/Pr(H2) commonly referred to as prior odds in favour of H1:

log10 Odds(H1). Each diagram consists of three curves, which relative location505

represents the LR model performance (Fig. 5b):

(a) the solid (red) curve (named experimental) - represents the ECE values

calculated using the LR model, which performance is under investigation

(Equation 10),

(b) the dashed (blue) curve (named calibrated) - represents the ECE values510

obtained for the experimental LR values transformed with Pool Adja-

cent Violators algorithm (PAV) [39, 40, 4]. The discriminating power,

expressed by the levels of false positive and false negative answers, of the
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calibrated set of LRs remains unchanged, even though it boasts the best

performance (i.e. LR values strongly support the correct hypotheses and515

give weak support for the incorrect). Therefore, the observed differences

between the calibrated curve and the ECE curve for the experimental LR

set indicate the possibility of improving the model performance,

(c) the dotted (black) curve (named null) - represents the performance of a

model, which does not support any of the hypotheses (LR = 1). This520

model always produces identical curves, acting as reference curves for es-

timating the model performance.

The relative location of the ECE curve for the experimental set of LR values

(solid, red line) to the remaining two (dashed, blue and dotted, black lines)

illustrates the performance of the LR model as a way for commenting on the525

evidential value. If there is still too much uncertainty within the model about

the correct hypothesis, the ECE curve for experimental LR values will grow,

and more information will be needed in order to identify the true hypothesis.

The best models for the interpretation of the evidence under analysis are those

for which the ECE curve lies as low as possible and as close as possible to the530

calibrated curve. If the curve appears to have greater values than the ones in the

null method, the evidence evaluation introduces more misleading information

than when assuming evidence neutrality (LR = 1). For the purposes of this

research, the information about the reduction of information loss due to the

analysis of evidence always refers to the point of log10Odds(H1) = 0 (Figure 5),535

although it could also be compared for any value of the prior odds.

2.3. Software

All the calculations including the spectra pretreatment, chemometric meth-

ods application and LR calculations were performed using R software [41], in-

cluding the MASS [42] and mclust [43] packages implemented in the environ-540

ment.
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3. Results and discussion

3.1. Descriptive statistics

The assumption of normal within-sample distribution and constant within-

sample variance was made. However, it cannot be verified formally as there are545

only a few replicate measurements within each sample, which is not enough for

any statistical test for normality.

Figure 6 demonstrates the projections of spectra features in the distance

representation on the first three linear discriminant directions. The plots in

Figure 6 refer to only single randomly selected test sets. The diagrams visualise550

the effect of applying LDA for maximising the between-objects variability and

minimising the within-object variability. This is portrayed by well separated

groups of observations coming from the same samples of the training set (see

same colour empty dots in Figure 6). The projections of test data (see same

colour full dots in Figure 6) in most cases also generate clusters of points repre-555

senting the spectra recorded for the same sample. However, their within-object

distributions seem to be more dispersed than for training data. This finding is

most likely due to the fact that the training sets are not as numerous as they

should be for being representative of the whole population and in many cases

may be insufficient for extensive description of the data genuine structure.560

The plots in Figure 6 outline also the underlying distribution of data for first

three linear discriminant directions, which cannot be assumed to be normal. For

this reason, kernel density estimation was applied for modelling the between-

object distribution in a non-parametric way (see section 2.2.3).

3.2. LR models performance565

In previous sections it was shown that usually only first few LDs seem to be

credible variables for LR models construction, i.e. delivering C ≫ U. They can

be selected using the BIC criterium and then used for constructing univariate,

bivariate, trivariate etc. näıve LR models. The presented results of LR cal-

culations account only for univariate, bivariate and trivariate LR models. For570
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Figure 6: (a) FTIR polypropylene spectra, (b) Raman solid car paints spectra, (c) Raman

metallic car paints distance representation of spectra, in the space of first three linear discrim-

inants. The plots refer to randomly selected pairs of training and test sets.
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Figure 7: Illustration of the levels of false positive and false negative answers for univariate

(Equation 2), bivariate (Equation 3) and trivariate (Equation 4) näıve LR models in regard to

the distance metric for (a) FTIR polypropylene spectra, (b) Raman solid car paints spectra,

(c) Raman metallic car paints spectra. Each violin plot accounts for all generated s=100 test

sets. For the FTIR spectra database there are only uni- and bivariate LR models presented

due to very limited number of results for trivariate ones.
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the FTIR spectra database there are only univariate and bivariate LR models

presented due to insufficient number of results for trivariate LR models. It ap-

pears as a consequence of the BIC criterion that usually chose only two LDs

that proved useful.

The experiments for estimation of the levels of false positive and false neg-575

ative answers were designed for the test sets according to the scheme described

in section 2.2.4 (Figure 4). For each comparison between two samples there

were s = 100 LR values (being consequence of s = 100 random selections of

test and training sets) within each LR model expressing the evidential value of

their similarity. Figure 7 illustrates the overall performance of the LR models580

under investigation in regard to the various distance metrics. Each violin plot,

being a hybrid of a boxplot and a kernel density plot curved along the boxplot

sides, corresponds with the false positive or false negative outcomes yielded from

s = 100 test sets (Figure 4).

The diagrams in Figure 7 clearly demonstrate the dependency between the585

false positive or false negative rates observed for various LR models. Regardless

of the distance metric it was noted that accounting for more LDs in näıve LR

models leads to decreasing of the false positive rates. This is not observed

for false negative rates, which rather stabilise around 5% for FTIR spectra of

polypropylene and 10% for Raman spectra of car paints. As demonstrated in590

Figure 7a the rates of incorrect models responses seem to be the lowest (below

20% for univariate LR models and around 10% for bivariate ones) when squared

Euclidean and correlation based distance metrics were used. The outcomes for

Raman spectra databases are more stable and insensitive to the chosen distance

metrics and oscillate between ca. 20% for univariate LR models to less than 5%595

for trivariate ones. The general impression indicates that on the basis of the LR

approach Raman spectra for car paints are more effectively differentiated than

FTIR spectra for polymers.

The results of ECE plots accounting for the strength of the support towards

both hypotheses also confirm above findings. Table 1 demonstrates the ECE600

values for particular LR models (Cllr,exp, Figure 5b) and the calibrated ECE
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Table 1: Empirical cross entropy results concerning Cllr,exp (corresponding with experimental

solid red curve in Figure 5b at log10Odds(H1) = 0) or Cllr,cal (corresponding with calibrated

dashed blue curve in Figure 5b at log10Odds(H1) = 0) yielded for the proposed LR models.

For FTIR spectra database there are only univariate and bivariate LR models presented due

to insufficient number of results for trivariate LR models.

FTIR polypropylene spectra

Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%]

univariate bivariate trivariate

Manhattan 41.8 33.7 38.5 26.9 - -

Euclidean 41.7 30.3 46.0 27.2 - -

squared Euclidean 27.7 17.7 22.3 14.5 - -

correlation-based 27.8 19.9 22.7 15.3 - -

Chebyshev 49.2 36.6 47.4 27.9 - -

Raman spectra of solid car paints

Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%]

univariate bivariate trivariate

Manhattan 5.8 0.0 0.7 0.0 0.1 0.0

Euclidean 5.9 0.0 0.7 0.0 0.09 0.0

squared Euclidean 4.7 0.0 0.4 0.0 0.05 0.0

correlation-based 4.9 0.0 0.5 0.0 0.05 0.0

Chebyshev 8.4 0.0 1.4 0.0 0.3 0.0

Raman spectra of metallic car paints

Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%] Cllr,exp [%] Cllr,cal [%]

univariate bivariate trivariate

Manhattan 6.7 0.0 1.1 0.0 0.02 0.0

Euclidean 5.9 0.0 0.8 0.0 0.1 0.0

squared Euclidean 5.6 0.0 0.6 0.0 0.1 0.0

correlation-based 5.6 0.0 0.7 0.0 0.1 0.0

Chebyshev 7.6 0.0 1.4 0.0 0.3 0.0
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values (Cllr,cal, Figure 5b), both referring to log10Odds(H1) = 0 (Figure 5b).

Each value corresponds to the ECE results from the median set of LR values

(regarded as a kind of a representative LR set) for each comparison obtained

from all s = 100 sets of LR values yielded for particular LR model. Table 1605

clearly illustrates that the LR models for FTIR spectra are most effective when

squared Euclidean or correlation-based distance metrics are used with the low-

est Cllr,exp and Cllr,cal values. For Raman spectra databases it is much more

difficult to clearly indicate any distance metric yielding the most promising re-

sults, since all of them prove that the performance of the proposed LR models is610

very good. Furthermore it is observed that the Cllr,exp values decrease with the

dimensionality of the LR models, indicating better performance and calibration

of the LR models.

Significant differences between the experimental (Cllr,exp) and calibrated

(Cllr,cal) ECE curves for FTIR spectra database (Table 1) point out great oppor-615

tunities for improving the models performance. An improvement may involve

expanding the database to allow better capturing of all the relevant features

characteristic for the whole population of the analysed samples.

An additional merit of the proposed methodology is that, despite the very

small database, the results obtained are satisfactory. Although the small size of620

the database necessitates caution when drawing conclusions and when making

generalisations for legal processing, it is still more advantageous to apply the

LR approach, even using a small database, than to perform subjective visual

comparison of spectra, where the database features are completely ignored.

4. Conclusions625

The presented studies were focused mainly on verifying the applicability of

LR approach for commenting on the evidential value of highly multidimensional

data for polypropylene and car paints in the form of FTIR and Raman spectra.

From the results already seen, chemometric tools seem to provide noteworthy

solutions for effective data dimensionality reduction, which is indispensable prior630
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to LR calculations. This combination of techniques addresses various aspects

of multidimensional data analysis and provides the compact solution to the

stated comparison problem of spectra. It is especially important as chemometric

tools outcomes cannot be directly interpreted for forensic purposes and their

application has to be followed by the LR approach. Therefore, combining the635

chemometric tools results with the LR approach has been gaining importance

in recent years [15, 14] due to the more complex data structures delivered by

advanced analytical equipment.

Comprehending the results of LDA for distance representation of spectra for

solving their comparison problem using LR approach enables for capturing the640

relevant between-object variability, which is usually lost when only for exam-

ple PCA is applied. Moreover, converting the space from feature to distance

representation and using LDA leads to the most effective spectra compression

by extracting only the information corresponding with characteristic objects

features and neglecting the irrelevant noise or negligible variability.645

From the results shown, it is evident that practically only the first few LDs

will play an important role and constitute credible variables for solving the

comparison problem with the application of näıve LR approach. The findings

confirm that it is always a matter of finding a compromise between the LR

model complexity (the number of variables it accounts for) and the magnitude650

of the misleading results it yields.

With the diversity of analysed microtraces growing rapidly, researchers are

often faced with limited databases due to the time and resources required for

data collection. The results presented here show that the proposed methodology

works even for such small databases, giving reliable conclusions in the compari-655

son problem. Caution is needed, however, when generalizing these conclusions,

as small databases may underrepresent the relevant population.

As was demonstrated in this paper, the likelihood ratio approach is capable

of solving the comparison problem of highly multivariate and correlated data

after proper extraction of the most relevant variance information hidden in the660

data structure. On the basis of the promising findings presented, work on the
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remaining issues is being continued and will be presented in future publications.
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