Non-standard bone simulation: interactive numerical analysis by computational steering

Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M. , Garcia, E. G., Burgkart, R. and Rank, E. (2011) Non-standard bone simulation: interactive numerical analysis by computational steering. Computing and Visualization in Science, 14(5), pp. 207-216. (doi: 10.1007/s00791-012-0175-y)

Full text not currently available from Enlighten.

Abstract

Numerous numerical methods have been developed in an effort to accurately predict stresses in bones. The largest group are variants of the h-version of the finite element method (h-FEM), where low order Ansatz functions are used. By contrast, we3 investigate a combination of high order FEM and a fictitious domain approach, the finite cell method (FCM). While the FCM has been verified and validated in previous publications, this article proposes methods on how the FCM can be made computationally efficient to the extent that it can be used for patient specific, interactive bone simulations. This approach is called computational steering and allows to change input parameters like the position of an implant, material or loads and leads to an almost instantaneous change in the output (stress lines, deformations). This direct feedback gives the user an immediate impression of the impact of his actions to an extent which, otherwise, is hard to obtain by the use of classical non interactive computations. Specifically, we investigate an application to pre-surgical planning of a total hip replacement where it is desirable to select an optimal implant for a specific patient. Herein, optimal is meant in the sense that the expected post-operative stress distribution in the bone closely resembles that before the operation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Ruess, Dr Martin
Authors: Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M., Garcia, E. G., Burgkart, R., and Rank, E.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Computing and Visualization in Science
Publisher:Springer-Verlag
ISSN:1432-9360
ISSN (Online):1433-0369

University Staff: Request a correction | Enlighten Editors: Update this record