
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/115782/

Deposited on: 25 February 2016

Sveinung Tornås¹
Marianne Løvstad¹, ³
Anne-Kristin Solbakk², ⁷
Jonathan Evans⁵
Tor Endestad³
Per Kristian Hol⁴,⁶
Anne-Kristine Schanke¹, ³
Jan Stubberud¹

¹) Sunnaas Rehabilitation Hospital, Norway
²) Department of Neurosurgery, Division of Surgery and Clinical Neuroscience, Oslo University Hospital – Rikshospitalet, Norway
³) Department of Psychology, University of Oslo, Norway
⁴) The Intervention Center, Oslo University Hospital – Rikshospitalet, Norway
⁵) Department of Mental Health and Wellbeing, Institute of Health & Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow, Scotland, UK
⁶) Institute of Clinical Medicine, University of Oslo, Norway
⁷) Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway

Correspondence and reprint request to: Sveinung Tornås, Sunnaas Rehabilitation Hospital, Bjørnemyrveien, 1450 Nesoddtangen, Norway. E-mail: Sveinung.tornaas@sunnaas.no

Word count abstract: 227
Word count manuscript: 4997
Abstract

Objective: Executive dysfunction is a common consequence of acquired brain injury (ABI), causing significant disability in daily life. This randomized controlled trial investigated the efficacy of Goal Management Training™ (GMT) in improving executive functioning in patients with chronic ABI.

Methods: Seventy patients with a verified ABI and executive dysfunction were randomly allocated to GMT ($n = 33$) or a psycho-educative active control condition, Brain Health Workshop (BHW) ($n = 37$). In addition, all participants received external cueing by text messages. Neuropsychological tests and self-reported questionnaires of executive functioning were administered pre-intervention, immediately after intervention, and at 6 months follow-up. Assessors were blinded to group allocation.

Results: Questionnaire measures indicated significant improvement of everyday executive functioning in the GMT group, with effects lasting at least 6 months post-treatment. Both groups improved on the majority of the applied neuropsychological tests. However, improved performance on tests demanding executive attention was most prominent in the GMT group.

Conclusions: The results indicate that GMT combined with external cueing is an effective metacognitive strategy training method, ameliorating executive dysfunction in daily life for patients with chronic ABI. The strongest effects were seen on self-report measures of executive functions 6 months post-treatment, suggesting that strategies learned in GMT were applied and consolidated in everyday life after the end of training. Furthermore, these findings show that executive dysfunction can be improved years after the ABI.

Keywords: Cognitive rehabilitation, Goal management, Executive functioning, Brain injury, Evidence based, Randomized controlled trail
INTRODUCTION

Executive functions (EF) are required for independent, purposive, self-directed behavior and include processes of initiation, planning, purposive action, volition, inhibition, flexibility, as well as self-monitoring and self-regulation (Lezak, 1995; Stuss, 2011). A division between “cold” and “hot” components of EF has been suggested, with “cold” EF corresponding closely to cognitive and logical processes, and the “hot” aspects of EF involving regulation of emotion and motivation (Chan, Shum, Touloupoulou & Chen, 2008). Thus, EF is an umbrella term for a set of interrelated capacities resulting from activity in anatomically and functionally independent, but interconnected networks subserved by widespread brain regions, the prefrontal cortex playing a central role (Stuss & Alexander, 2007).

Executive dysfunction (ED) is common following acquired brain injury (ABI) (Stuss & Levine, 2002; Novakovic-Agopian et al., 2011), and may disrupt the ability to effectively use intact functions or compensatory strategies, undermine efficient self-management (Lewis, Babbage & Leathem, 2011), hamper the rehabilitation process (Robertson & Murre, 1999), and is also associated with long-term negative psychosocial and vocational outcome (Draper & Ponsford, 2008; Ylvisaker & Feeney, 2000). Thus, techniques for reducing ED might significantly impact functional outcome (Manly & Murphy, 2012).

Most theories describe EF as top-down controlled processes involved in the control and direction of self-regulatory cognition, emotion and behavior (Cicerone et al., 2006; Stuss, 2011). Current theories of cognitive EF bear close resemblance to dominant models of attention (Norman & Shallice, 1986; Posner & Petersen, 1990; 2012) and working memory (Baddeley, 2010), placing attentional control at the cornerstone of the cognitive and anatomical infrastructure underlying EF (Chiesa, Calati & Serretti, 2011; Miyake et al., 2000).
Since EF is a heterogeneous capacity, there is a need for multifaceted interventions covering a wide range of EFs (Spikman, Boelen, Lamberts, & Fasotti, 2010). However, there are methodological challenges in identifying the “active ingredients” of treatments, their unique contributions, and the specific targets of the interventions (Cicerone et al., 2006). The level and precision of outcome measurement constitutes a related challenge, as scores on neuropsychological tests may not accurately reflect ED in everyday life (Manchester, Priestley & Jackson, 2004), and subjective evaluation of cognitive functioning does not necessarily predict test performance (Spencer, Draq, Walker & Bielaiuskas, 2010).

The International Classification of Functioning, Disability, and Health model is one approach to classify the targeted level of functioning for interventions and outcome measurements (Bilbao et al., 2003). Consequences of disease and disability are described at the impairment- (e.g. recall numbers), activity- (e.g. pay bills), and/or participation-level (e.g. work as a banker), the latter two being the ultimate end-goals of rehabilitation (Peterson, 2005). The model provides a standardized analytical framework, acknowledging that different levels of the taxonomy are interrelated in complex ways, and might be difficult to separate in real-life (Whyte et al., 2014).

Cognitive rehabilitation interventions may focus on restoring or re-training cognitive functions, compensation by the use of internal/external strategies, environmental modifications, and/or pharmacological treatment (Cicerone et al., 2006). Although the effectiveness of cognitive rehabilitation is documented within some domains following ABI, there is still a paucity of empirical evidence for the efficacy of interventions for rehabilitation of EF (Cicerone et al., 2011; Rees, Marshall, Hartridge, Mackie & Weiser, 2007; Wilson, 2008). Reviews recommend metacognitive strategy training including self-monitoring and self-regulation as practice standard following ED due to traumatic brain injury (TBI) (Cicerone et al., 2011; Kennedy et al., 2008). Promising results have been reported for
interventions such as problem solving therapy (Rath, Simon, Langenbahn & Sherr, 2003; Miotto, Evans, de Lucia & Scaff, 2008; von Cramon, Matthes-von Cramon & Mai, 1991) and goal management training (GMT; e.g., Levine et al., 2011), incorporating self-instructions aimed at strengthening the individual’s ability to interrupt and control ongoing behavior. Interventions for ED also need to include motivational, attitudinal, and affective processes (Dams-O’Connor & Gordon, 2013; Rath et al., 2003), otherwise negative affect and avoidance can impede or disrupt implementation of cognitive problem-solving skills (D’Zurilla & Nezu, 2001).

Goal Management Training (GMT) is a structured, interactive, manual-based rehabilitation protocol, originally developed by Robertson (1996). It was based on Duncan’s (1996) theory of “goal neglect”, emphasizing impaired construction and use of goal lists as an important cause of dysexecutive behavior. Recent versions of GMT have increasingly emphasized the role of sustained attention, because it’s required to actively maintain neural representations of goals in working memory (Robertson & Garavan, 2000; Levine et al., 2011). This is in line with Stuss’s (2011) update on the anterior attentional system, suggesting two cognitive EF processes in addition to energization (initiation and sustaining); one supporting monitoring of ongoing performance, the other related to task setting. Thus, executive attention requires both stable maintenance of attentional focus, and top-down modulation. Similarly, other hierarchical models of cognitive functioning suggest that both arousal and sustained attention underlie and support higher-order functions (Dams-O’Connor & Gordon, 2013).

Habits or environmental triggers may oppose and displace higher-order goals, resulting in cue-dependent or distracted behavior, when the attention system is compromised (Fernandez-Duque, Baird & Posner, 2000; Levine et al., 2011). The capacity to allocate processing resources selectively to a particular stimulus (Blake, Heiser, Caywood, &
Merzenich, 2006), presupposes an adequate level of arousal (Coull, 1995; Smith & Nutt, 1996). Thus, low-level deficits in arousal or arousal regulation, a common complication of brain injury (Baumann et al., 2007), can contribute to high-level executive and attentional deficits (Coull, 1995; Greene, Bellgrove, Gill & Robertson, 2009; Smith & Nutt, 1996). Arousal can be manipulated by external and internal alerts (Robertson, Mattingley, Rorden, & Driver, 1998). External alerts (tones) combined with metacognitive strategy training has been associated with improved task performance (Manly, Hawkins, Evans, Woldt & Robertson, 2002), and enhanced management of current and future goals (Fish et al., 2007), suggesting that content-free cueing increases arousal, and draws attention back to relevant goals. The use of alerting and mindfulness techniques (Kabat-Zinn, 1990; Segal, Williams & Teasdale, 2002) to support the maintenance of attentional focus is embedded in GMT. Internalization of such prompts is promoted through training of a self-cueing process “to stop ongoing behavior in order to define goal hierarchies and monitor performance” (Levine et al., 2011, p. 2).

GMT has received empirical support in studies of patients with neurological conditions (e.g., ABI) and in healthy elderly adults (e.g., Grant, Ponsford & Bennett, 2012; Levine et al., 2000; 2007; 2011; Miotto et al., 2009; Novakovic-Agopian et al., 2011; van Hooren et al., 2007; Stubberud, Langenbahn, Levine, Stanghelle & Schanke, 2013). Studies of GMT for patients with ABI have reported improved sustained and executive attention (error reduction, planning and time allocation) (Levine et al., 2000; 2011; Metzler-Baddeley et al., 2010; Novakovic-Agopian et al., 2011; Schweitzer et al., 2008), and reduction of ED in daily life (Miotto et al., 2009; Spikman et al., 2010). Imaging studies have suggested that GMT results in functional changes in brain networks supporting sustained attention (Chen et al., 2011; Robertson & Levine, 2013), which in turn may lead to functional improvements that generalize to broader domains of goal-directed behaviors.
A review of the effectiveness of GMT for patients with ABI (Krasny-Pacini, Chevignard & Evans, 2013) emphasize the lack of clarity in explaining positive treatment-effects in the literature, that is what constitutes the “active treatment ingredients”, and what characterize those who benefit from GMT. Furthermore, GMT appears to be more effective in studies measuring outcomes of improvement in everyday activities rather than test-performance. In strategy-oriented cognitive training, one does not necessarily expect changes to be observed at the impairment-level as assessed by neuropsychological tests, but improvement should be evident on functional measures.

Previous GMT studies of ABI have some important methodological limitations; crossover designs making long-term follow up difficult (Novakovic-Agopian et al., 2011; Chen et al., 2011); GMT combined with other interventions (problem solving therapy, Miotto et al., 2009; multifaceted treatment, Spikman et al., 2010) making it difficult to isolate the unique effects of GMT. Other studies are single case-studies (Levine et al., 2000; Schweitzer et al., 2008; Metzler-Baddeley et al., 2010), or include small samples and are only partially randomized (Levine et al., 2011). Only two group-based GMT studies (Levine et al., 2011; Novakovic-Agopian et al., 2011) have reported follow-up analyses more than three months post-intervention, limiting the evidence for long-term effects.

The present study addresses the methodological weaknesses of prior studies by having a robust randomized controlled trial design, an active control group, long term follow-up, blinded assessments, and radiological injury descriptions. The study also included a new module addressing emotional dysregulation, and both groups received external cueing by text messages in order to facilitate effective goal management in everyday life.

The overall aim was to investigate the efficacy of GMT on cognitive aspects of EF in patients with chronic ABI, compared to a control treatment that was matched to GMT with regard to non-specific factors including therapist contact and social facilitative processes.
associated with group treatment. Based on findings from previous GMT-studies, we hypothesized that patients receiving GMT would experience improved attention through changes in executive (shifting, inhibition, and time allocation) and sustained attention, as measured in daily life (questionnaires) and neuropsychological tests, immediately after training and at six months follow-up. Data from questionnaires with a specific focus on emotional and psychological function will be reported elsewhere.

METHODS

Participants and Procedures

A total of 178 patients with verified ABI, and a documented history of ED were invited to participate. An information letter was sent to 153 former patients at Sunnaas rehabilitation hospital, and 2 were recruited through their primary physician. Finally, 23 contacted the research-group following presentation of the study in a user organization’s magazine. Participants had to have a documented non-progressive ABI, be minimum 6 months post-injury, experience ongoing ED (by self-report and/or neuropsychological assessment), and between 18-67 years. Major psychiatric diseases, ongoing substance abuse, neurodegenerative disorders, and severe cognitive problems interfering with the capacity to participate in the program, were set as exclusion criteria.

Ninety persons responded by giving written informed consent, and underwent a comprehensive screening interview examining medical, cognitive, and psychological issues. Six did not meet the inclusion criteria, 14 reconsidered participation due to practical reasons, resulting in a final sample of 70 participants (Figure 1 Consort diagram; Schulz, Altman, & Moher, 2010). A slight majority were males (52.9%), TBI being the dominant cause of injury (64.3%), mean time since injury was 97.4 months (SD = 112.4), age ranged from 19-66 years (M = 42.9; SD =13), and mean length of education was 13.4 years (SD =2.4) (Table 1).

[INSERT FIGURE 1 HERE]
[INSERT TABLE 1 HERE]

The goal was to recruit 80 participants, with 40 in each group. Hence, 40 A’s (GMT) and 40 B’s (Brain Health Workshop; BHW) were drawn from a lot and put in enclosed envelopes. Following baseline assessment of enrolled persons, an envelope was drawn for each participant, determining group allocation. The person responsible for randomization was not involved in the study, the groups were not stratified. Groups of 5-7 participants were established, resulting in 5 GMT and 7 BHW groups. The participants were informed that the study investigated two different approaches to cognitive training of EF; but not informed of the randomization outcome, thus blinded to the condition considered to be the active treatment.

Magnetic resonance imaging (MRI) for lesion characterization was obtained for 56 of the participants at baseline with a 3 Tesla scanner (Achieva 3.0T, Philips Medical System, Best, The Netherlands) at the Intervention Center at Oslo University Hospital. For 5 participants, previous MRI/Computed tomography scans were collected from other hospitals. Nine participants had missing data as scanning could not be performed due to various reasons. All scans were interpreted by an experienced radiologist (author PKH). There were no significant group differences regarding brain injury characteristics. The frontal lobes were the most frequent cortical location of damage, followed by temporal and parietal lobe damage. About 50% of the total sample had signs of brain atrophy (Table 2).

[INSERT TABLE 2 HERE]

The study was approved by the Regional Committee for Medical Research Ethics (2012/1436), South-Eastern Norway. The research was conducted in accordance with the Helsinki Declaration.

Intervention and external cuing
GMT and BHW protocols were based on a Norwegian translation and adaptation of Levine and colleagues’ (2011) protocol, administered following a script with accompanying Powerpoint slides and participant workbooks. Minor adjustments made to the GMT protocol after 2011 (www.goalmanagementtraining.com) were made available through personal communication with Dr. Levine. Participants received the same amount of training, support from trainer, and homework assignments. Each group met for one day every second week, a total of 8 two-hour sessions distributed over four days (Table 3). All sessions followed the same procedure; introduction to key-concepts, practical exercises, and discussion of examples from the participants’ daily life. The primary investigator (author ST) led all groups, with assistance of a skilled co-therapist. Following the fourth session, all participants received a daily text-message stating “STOP” (a key instruction in GMT), for the remaining duration of treatment (28 per participant), to cue goal management in their daily living. The cuing time was between 9 am and 5 pm, and changed every second or third day to prevent habituation.

Missed attendance was minimal. One participant in the BHW-group missed 2 sessions. Participants refrained participating in other cognitive rehabilitation programs during the study.

[INSERT TABLE 3 HERE]

Goal Management Training

The GMT intervention (Levine et al., 2011) comprises introduction to key concepts, discussions and exercises to explore and relate the concepts to the participants’ daily life. Core concepts included the distinction between absentmindedness and presentmindedness (awareness of the internal and external states), slip-ups in daily life, habitual responding (the “autopilot”), stopping and thinking, working memory (the “mental blackboard”), the importance of goals, defining and splitting goals into subtasks, and checking. Mindfulness-
based exercises were introduced to enhance awareness toward current feelings, behaviors and
goal states (Kabat-Zinn, 1990; Segal et al, 2002). The emotional-regulation module
introduced how thoughts, just like behavior, can be “automatic” through use of the “the
automatic pilot” metaphor which is a core concept in GMT, and the relationship between
thoughts, situations and emotions (Beck & Alford, 2009). The participants explored how the
“STOP”-technique and present-mindedness could assist in managing negative emotions
through demonstrations, and discussions of examples from daily life. Homework assignments
included practical exercises and logging of activity, with special attention given to
mindfulness exercises throughout the entire intervention.

Active control condition

BHW is a psychoeducational protocol matched to GMT for therapist contact, quantity
of educational material, homework, and group participation (Levine et al., 2011). It comprises
educational materials and various lifestyle interventions that are typically part of psycho-
educative programs delivered at brain rehabilitation centers (e.g. Becker, Kirmess, Tornas &
Lovstad, 2014). The sessions addressed brain function and dysfunction, brain plasticity,
memory, EF, and attention. Stress, physical exercise, sleep, nutrition, and energy management
were given particular attention. Homework and within-session activities included reading
assignments, brain-games and puzzles, testing of acquired knowledge, and practical exercises
like keeping a sleep log. The seven original BHW sessions (Levine et al., 2011) were
delivered over eight sessions. Some of the reading assignments were replaced with
comparable Norwegian information-booklets.

Baseline measures
Tests of general intellectual capacity (Wechsler Abbreviated Scale of Intelligence, WASI; Wechsler, 1999), digit span (Wechsler Adult Intelligence Scale III, WAIS III; Psychological Corporation, 1997), visuospatial attention and memory (Brief Visuospatial Memory Test Revised [BVMT-R]; Benedict, 1997), and verbal learning and memory (California Verbal Learning Test - II, Standard Form [CVLT-II]; Delis, Kaplan & Kramer, 2000), were included to describe cognitive functioning at baseline. The Hopkins Symptom Checklist, HSCL-25, (Derogatis, Lipman Rickels, Uhlenhuth & Covi, 1974), a self-report questionnaire, was included to describe symptoms of anxiety and depression.

Outcome measures

In line with the hypothesized changes in executive and sustained attention, the following outcome measures were applied at baseline, immediately after the end of training, and at 6 months follow-up. Measures of EF in daily living included index and subscale scores from the Behavior Rating Inventory of Executive Function - Adult version (BRIEF-A; Gioia et al., 2000), total scores from the Cognitive Failures Questionnaire (CFQ; Broadbent, FitzGerald & Parkes, 1982), and the Dysexecutive Questionnaire (DEX; Burgess, Alderman, Wilson, Evans & Emslie, 1996).

Neuropsychological outcome measures included Conners' Continuous Performance Test II (CPT-II; Conners, 2000), Color-Word Interference Test (CWI), Verbal Fluency Test (VFT), the Tower Test, and the Trail Making Test (TMT) from the Delis-Kaplan Executive Function System (D-KEFS; Delis et al., 2001). The Hotel Task (Manly et al., 2002) was included to increase ecological validity of test measures, as it mimics real-life multitasking situations, demonstrating acceptable ecological validity, and sensitivity in detecting ED in various disorders (Roca et al., 2008, 2010; Torralva et al., 2012). Similarly, the UCSD Performance-Based Skills Assessment (UPSA) (Patterson et al., 2001), originally developed
for studies of schizophrenia (Patterson, Goldman, McKibbin, Hughs & Jeste, 2001; Mausbach, Harvey, Goldman, Jeste & Patterson, 2007), was included because it targets “real-life” multitasking situations, as subjects role-play with the examiner in three functional domains (communication, finance, and transportation). Motor speed (TMT5), a cognitive domain often affected by ABI but not targeted by the intervention, was included as a marker of non-specific change (Table 4).

[INSERT TABLE 4 HERE]

Participants completed a custom made questionnaire evaluating their satisfaction with the treatment at the end of training, and at 6 months follow-up. The assessors were blinded for group allocation at all assessment points.

Statistical analysis

Data analysis was performed using SPSS version 21.0 for Windows. Frequency distributions, means, and standard deviations (SD) were calculated for demographic, medical, neuropsychological, and questionnaire variables. Differences between groups were analyzed using t-tests for continuous variables and Chi-square for dichotomous variables. A general linear model with repeated measures analysis of variance (RM ANOVA) was used to examine group-related treatment effects. A 2X3 mixed-design was applied, with Group (GMT, BHW) as between-subjects factor, and Time (baseline [T1], post-intervention [T2], and 6 months follow-up [T3]) as within-subjects factor, using a multivariate approach to avoid the more stringent univariate model assumptions. Analyses used intention-to-treat principle, including all randomized subjects, regardless of whether they completed treatment. T-tests were used to explore change scores (T1-T2, T1-T3) within each group. The strength of experimental effects was interpreted with effect-size statistics, including partial eta-squared for ANOVA results and eta-squared (\(\eta^2\)) for t-tests. According to Cohen (1988), thresholds for interpreting
\(\chi^2 \) are <.06 (small), .06-.14 (medium), and >.14 (large). Due to the high number of comparisons performed, findings with a significance level of <.01 are described as effects, findings in the p<.01-.05 range considered to represent tendencies.

RESULTS

Baseline functioning

The groups did not deviate from each other at baseline with regard to demographic and medical variables (Table 1), or self-reported symptoms (Table 5; BRIEF-A, DEX, HSCL-25, and CFQ). The groups performed comparably on neuropsychological measures (WASI, CVLT-II, BVMT-R, Digit-Span, Letter-Number Sequencing, CPT-II, Tower test, TMT, CWI, VFT), except that GMT made more commission errors on the CPT-II (p<.035). With the exception of CVLT-II delayed recall, BVMT-R, and CPT-II omissions, both groups performed within 1 SD from the normative mean on the neuropsychological measures, indicating mild to moderate cognitive impairments (Table 6).

[INSERT TABLE 5 HERE]

[INSERT TABLE 6 HERE]

Treatment effects

Self-reported executive functioning in daily living

Table 7 provides mean scores on the outcome measures of EF in daily life for GMT and BHW, with time-, group by time effects, and intra-group change over time. There was a significant improvement over time on all three BRIEF-A indexes, as well as time by group interactions. The effect-size estimates indicate large training effects. The GMT group showed significant reductions in self-reported executive problems from T1-T3 on all indexes, the BHW group on the Metacognitive index from T1-T2. The CFQ showed a significant main-effect of time, but no group-interaction. Significant change across time on the DEX total score was found, as well as time by group interactions. T-test analyses showed a significant
reduction in self-reported dysexecutive symptoms from T1-T3 for GMT, with the effect-size estimate indicating medium training effect.

[INSERT TABLE 7 HERE]

Neuropsychological tests

Table 8 displays mean GMT and BHW scores on neuropsychological measures, with time-, group-by-time effects, and intra-group change. There was significant improvement across time for commission errors (CPT-II). T-tests analysis demonstrated a significant reduction in commissions in both groups from T1-T2, and for BHW from T1-T3. There was a tendency towards significant improvement of omissions errors across time, and t-tests approached significance for reduction of omissions in GMT at T3.

There was significant improvement across time on all Tower Test variables. T-tests showed significant improvements of total time from T1-T2 in both groups, from T1-T3 for GMT, significant improvement of the total achievement score for GMT from T1-T2, and from T1-T3 for BHW. Performance on the Hotel task variables demonstrated a significant time-effect. T-tests showed significant improvement in both groups on the number of tasks attempted and time allocation at T3. Total UPSA-scores improved over time, with t-tests demonstrating a significant improvement for GMT from T1-T2. No significant differences over time were found on the motor speed test (TMT5).

Group by time interactions approaching significance were seen for CWI total errors condition 3 minus 1, and for VFT3 total errors, showing a reduction in errors across time maintained at T3 for GMT only, with medium effect-size estimates. A sum-score for all errors on neuropsychological tests was calculated to explore treatment-related change in errors (CPT-II omissions and commissions, TMT1-4, VFT1-3, and CWI1-4, and rule violations in the Tower test). This measure showed a tendency towards significant time by group interaction, with t-tests displaying significant reduction of errors for GMT from T1-T2 and
T1-T3, effect-size indicating medium training effects. The participants were comparably satisfied with the training at T2 and T3.

[INSERT TABLE 8 HERE]

DISCUSSION

The main aim of this randomized controlled trial was to examine the efficacy of GMT compared to an active control-condition for patients with chronic ABI and ED in daily life, with an emphasis on improving cognitive aspects of EF. Patients receiving GMT showed significant improvement in self-reported cognitive EF in daily life, with the greatest improvements evident after 6 months. A general trend towards improved neuropsychological functioning was found. There was a tendency towards improved performance on attention demanding tasks for GMT, with error reduction indicating improved executive attention. The overall pattern of results confirmed that GMT had a more favorable effect on cognitive EF than an active psycho-educative control condition. The minimal attrition speaks to the feasibility and lends social validity to the intervention.

GMT-related improvement of daily life cognitive EF was evidenced by decreased symptom burden at T3 on GEC of the BRIEF-A, as well as the Behavioral regulation (BRI) and Metacognition indexes. The BHW-group improved on the Metacognition index at T2, but regressed towards baseline levels at T3, possibly indicating non-specific treatment effects. The GMT participants reported a reduction of daily life ED (DEX), and less cognitive failures (CFQ) at T3. These findings suggest that GMT reduces cognitive ED through better goal management in daily life. Although the majority of the items of the BRIEF-A and DEX relate to cognitive EF, these questionnaires have a broader scope than CFQ, also covering emotional aspects of ED. As such, this might explain the stronger treatment effects seen on BRIEF-A and DEX, compared to CFQ.
The core of GMT is to stop ongoing behavior periodically, in order to monitor and adjust goals. This supports the maintenance of goal-related information essential to managing the sequence of stages needed to accomplish one’s goals, and illustrates the top-down approach of GMT, where stages of goal management are trained in order to be applied to a variety of situations (Levine et al., 2000). The greatest GMT-related improvements were seen after 6 months, indicating that participants continued to use the learned strategies and established new habits, possibly reflecting consolidation of the strategies in everyday life (Novakovic-Agopian et al., 2011; Spikman et al., 2010). It could also reflect increased perceived self-efficacy over time, as metacognitive strategy-training targeting patients’ cognitive and emotional self-regulation of cognitive and emotional processes is associated with increased confidence in symptom management (Cicerone, 2012).

Krasny-Pacini et al. (2013) reported that studies finding an intervention effect of GMT at the participation-level (e.g. questionnaires), failed to detect a unique intervention effect at the impairment-level (e.g. tests). Miotto et al. (2009) and Spikman et al. (2010) showed comparable progress on neuropsychological tests in both GMT- and control groups. Similarly, the present study found a general trend towards improvement in cognitive test-performance, probably reflecting a combination of test-retest and non-specific treatment-effects.

The use of neuropsychological tests as outcome measures raises a number of issues. Response variability is a key symptom of frontal brain damage (Stuss et al., 2003). The relationship between tests and assumed cognitive domains furthermore has varying levels of validity (Burgess et al., 2006), tests of EF typically tap multiple cognitive functions (Chan et al., 2008), and repeated administrations raises the issue of practise effects (Sohlberg et al., 2000). Since EF is crucial in managing new situations, and a test can only be new once, tests of EF might face particular test-retest reliability issues (Burgess, Alderman, Evans, Emslie & Wilson, 1998). Neuropsychological measures typically capture only certain aspects of EF, and...
may thus not accurately reflect dysfunction in everyday life (Lewis et al., 2011; Spikman et al., 2010). It has been suggested that performance-based measures and subjective ratings of EF assess different aspects of cognitive and behavioural functioning that independently contribute to clinical problems (Toplak et al., 2012). In summary, establishing adequate outcome measures in EF-interventions is very challenging.

As the inclusion of an active comparison group is assumed to control for non-specific treatment-effects, smaller treatment effects are to be expected compared to observational studies. Still, several measures of error-reduction approached significance in the GMT group at T3, suggesting improved inhibition of automatic responding (Levine et al, 2000; 2011; Miotto et al., 2009). Improving the awareness of attentional errors is crucial to GMT, rehearsed throughout the sessions by means of noticing attentional slips, stopping the autopilot, and improving present-mindedness. These tendencies are consistent with the theoretical assumptions that GMT targets executive attention (Robertson & Levine, 2013). This result can be seen as a contribution to disentangle the non-specific from the GMT-specific training-effects, resulting in fewer but theoretically more important findings, such as GMT possibly being associated with distinct improvement of inhibitory control. Supporting this notion, no changes were seen on the non-specific control measure of motor speed.

Since all participants received “STOP” messages, it is not possible to isolate the cuing-effect. Still, the significance of “STOP” was different for the groups, considering “STOP” a key-concept in GMT, and non-present in BHW. As such, this cuing was not “content-free”, and might have augmented treatment-effects in the GMT group specifically (Fish et al., 2007; Manly et al., 2002).

GMT attempts to address underlying deficits in sustained attention (Robertson & Levine, 2013) and could thus be conceptualized as a “bottom-up” intervention targeting the
impairment-level. However, as a metacognitive strategy intervention aiming at improved “top-down” control, GMT also targets the activity- and participation-level (Bilbao et al., 2003). Carrying out the intervention in real life, this distinction proves very challenging to uphold as a clear-cut distinction. “Training” attention (impairment) without simultaneously practicing any task (activity) is difficult to conceive. When practice is an important treatment ingredient, it will usually be practice of a task rather than a function (Whyte et al., 2014), mirroring the overall goals of rehabilitation in improving the individuals’ capacity for activity and participation. As such, this challenge is not only methodological, but taps into the real challenge facing all rehabilitation efforts. More research is needed to further describe and clarify the level that should be the target of GMT.

Strengths and limitations

The strong design of this study, being a randomized controlled trial including an active control group with blinded assessors at all assessment-points, as well as including the largest study sample so far, counters many of the methodological challenges of previous GMT studies. However, some significant limitations should be noted. Implementation of the module for emotional regulation and external cuing hampers identification of the unique contributions of GMT-intervention, and the external cuing can be considered to not be equivalent in the two groups. The sample heterogeneity makes it difficult to explore the interaction between outcomes and patient characteristics in detail. Since EF is crucial in managing new situations, the lack of new EF tests post-training makes it challenging to explore generalization effects. Split-half administrations for some tests, e.g. Tower test, could have circumvented this to some extent. Factors like awareness, demand characteristics, cognitive deficits, social desirability bias, acquiescent responding and extreme responding, may affect the accuracy and validity of self-report (Cantor et al., 2014; Fischer, Trexler, & Gauggel, 2004; Hart, Whyte,
Kim, & Vaccaro., 2005; Logan, Claar, & Scharff, 2008; McCambridge, de Bruin, & Witton, 2012; Prigatano & Altman, 1990), contributing to a tenuous relationship between self-report and “real life” activity-limitations. Furthermore, the lack of objective measures of actual goal management makes it difficult to conclude whether the reported improvements relates to improved self-perceived mastery of daily activities or actual improvements. Future studies might add collateral information from other sources (e.g., family members).

CONCLUSIONS

The present study on the efficacy of GMT for ameliorating ED in daily life following chronic ABI, supports the use of GMT combined with external cuing. GMT led to significant improvement of self-perceived EF in daily life, and a tendency towards improved performance on attention demanding tasks. The strongest effects were seen after 6 months, suggesting that strategies learned in GMT are applicable and consolidated in everyday life after training cessation. Importantly, these findings show that ED can be improved even years after ABI. Future studies should make efforts to enhance the understanding of what patient characteristics predict treatment outcome following GMT.

ACKNOWLEDGMENTS

This study was funded by the Norwegian ExtraFoundation for Health and Rehabilitation through EXTRA funds (grant number 2011/2/0204). The authors thank the participants, and the staff at the Cognitive Rehabilitation Unit Sunnaas Rehabilitation Hospital. In particular we want to thank Brian Levine for providing the BHW material and for valuable advice throughout. We also thank Kari Agnete Lilleby, Liva Jones, Andreas Schillinger, Gina Hjort-Larsen, Per Anders Gulberg, Daniel Loeke, Eva McCarthy, Lilly-An Austad, whom helped carry out the study, and Grethe Loevland, and Svein Are Vatnehol for organizing the MRI’s. The authors report no conflict of interest.
REFERENCES

Table 1. Demographic and brain injury characteristics of the participants

<table>
<thead>
<tr>
<th></th>
<th>GMT (n = 33)</th>
<th>BHW (n = 37)</th>
<th>Total (n = 70)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD</td>
<td>42.12 (13.72)</td>
<td>43.57 (12.39)</td>
<td>42.89 (12.96)</td>
<td>.64</td>
</tr>
<tr>
<td>Gender, M = men, F = female (%)</td>
<td>19 M (57.6), 14 F (42.4)</td>
<td>19 M (51.4), 18 F (48.6)</td>
<td>38 M (54.3), 32 F (45.7)</td>
<td>.60</td>
</tr>
<tr>
<td>Education, years ± SD</td>
<td>13.23 (2.54)</td>
<td>13.55 (2.36)</td>
<td>13.4 (2.43)</td>
<td>.58</td>
</tr>
<tr>
<td>Time since injury, months ± SD</td>
<td>106.94 (126.82)</td>
<td>81.46 (98.08)</td>
<td>97.47 (112.44)</td>
<td>.35</td>
</tr>
<tr>
<td>Injury etiology n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.28</td>
</tr>
<tr>
<td>TBI</td>
<td>23 (32.9)</td>
<td>22 (31.4)</td>
<td>45 (64.3)</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>6 (8.6)</td>
<td>9 (12.9)</td>
<td>15 (21.5)</td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td>2 (2.9)</td>
<td>4 (5.7)</td>
<td>6 (8.6)</td>
<td></td>
</tr>
<tr>
<td>Anoxic</td>
<td>0 (0)</td>
<td>2 (2.9)</td>
<td>2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2 (2.9)</td>
<td>0 (0)</td>
<td>2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Vocational status n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.12</td>
</tr>
<tr>
<td>Work (full-, part time)</td>
<td>8 (11.4)</td>
<td>5 (7.1)</td>
<td>13 (18.5)</td>
<td></td>
</tr>
<tr>
<td>Voc rehab/sick leave</td>
<td>12 (17.1)</td>
<td>16 (22.9)</td>
<td>28 (40)</td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>5 (7.1)</td>
<td>1 (1.4)</td>
<td>6 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>8 (11.4)</td>
<td>15 (21.4)</td>
<td>23 (32.8)</td>
<td></td>
</tr>
<tr>
<td>Relationship status n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>Married</td>
<td>14 (20)</td>
<td>14 (20)</td>
<td>28 (40)</td>
<td></td>
</tr>
<tr>
<td>Partner</td>
<td>6 (8.6)</td>
<td>5 (7.1)</td>
<td>11 (15.7)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>9 (12.9)</td>
<td>12 (17.1)</td>
<td>21 (30)</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>2 (2.9)</td>
<td>3 (4.3)</td>
<td>5 (7.1)</td>
<td></td>
</tr>
<tr>
<td>Girl/boyfriend</td>
<td>2 (2.9)</td>
<td>3 (4.3)</td>
<td>5 (7.1)</td>
<td></td>
</tr>
</tbody>
</table>

Note. Percentage totals may not add to 100% due to rounding. GMT = Goal Management Training; BHW = Brain Health Workshop; Voc rehab = Vocational rehabilitation.
Table 2. Radiological description of the brain injuries

<table>
<thead>
<tr>
<th>CT/MRI verified ABI at onset n (%)</th>
<th>GMT (n = 33)</th>
<th>BHW (n = 37)</th>
<th>Total (n = 70)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>33 (100)</td>
<td>69 (98.6)</td>
<td>36 (97.3)</td>
<td>.34</td>
</tr>
<tr>
<td>No a)</td>
<td>0</td>
<td>1 (1.4)</td>
<td>1 (2.7)</td>
<td></td>
</tr>
<tr>
<td>MRI verified lesion at study baseline n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes b)</td>
<td>22 (66.7)</td>
<td>45 (64.3)</td>
<td>23 (62.2)</td>
<td>.94</td>
</tr>
<tr>
<td>No</td>
<td>8 (24.2)</td>
<td>16 (22.8)</td>
<td>8 (21.6)</td>
<td></td>
</tr>
<tr>
<td>Missing c)</td>
<td>3 (1)</td>
<td>9 (12.9)</td>
<td>6 (16.2)</td>
<td></td>
</tr>
<tr>
<td>Injury localization n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>8 (24.2)</td>
<td>15 (21.4)</td>
<td>7 (18.9)</td>
<td>.73</td>
</tr>
<tr>
<td>Left</td>
<td>7 (21.2)</td>
<td>16 (22.9)</td>
<td>9 (24.3)</td>
<td></td>
</tr>
<tr>
<td>Bilateral</td>
<td>7 (21.2)</td>
<td>12 (17.1)</td>
<td>5 (13.5)</td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>14 (42.4)</td>
<td>25 (35.7)</td>
<td>11 (29.7)</td>
<td>.38</td>
</tr>
<tr>
<td>Parietal</td>
<td>6 (18.2)</td>
<td>10 (14.3)</td>
<td>4 (10.8)</td>
<td>.45</td>
</tr>
<tr>
<td>Temporal</td>
<td>7 (21.2)</td>
<td>14 (20)</td>
<td>7 (18.9)</td>
<td>.94</td>
</tr>
<tr>
<td>Occipital</td>
<td>1 (3)</td>
<td>1 (1.4)</td>
<td>0</td>
<td>.31</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>0</td>
<td>2 (2.9)</td>
<td>2 (5.4)</td>
<td>.16</td>
</tr>
<tr>
<td>Subcortical nuclei d)</td>
<td>2 (6.1)</td>
<td>3 (4.3)</td>
<td>1 (2.7)</td>
<td>.53</td>
</tr>
<tr>
<td>Subcortical white matter</td>
<td>12 (36.4)</td>
<td>25 (35.7)</td>
<td>13 (35.1)</td>
<td>.88</td>
</tr>
<tr>
<td>Atrophy n (%)</td>
<td>19 (57.6)</td>
<td>16 (43.2)</td>
<td>35 (50)</td>
<td>.36</td>
</tr>
</tbody>
</table>

Note. a) Verified by neurological and neuropsychological evaluation. b) MR/CT scans were collected from other hospitals for five participants due to practical or medical reasons; the images were interpreted by the same radiologist. All 5 scans were performed between 2011-2013. c) MRI was not possible to conduct due to practical reasons for four participants, medical reasons for four, and one participant refused to undergo repeated scanning. d) Striatum, basal ganglia and/or thalamus. GMT = Goal Management Training; BHW = Brain Health Workshop; CT = Computer tomography; MRI = Magnetic Resonance Imaging.
<table>
<thead>
<tr>
<th>Training day</th>
<th>GMT session</th>
<th>Objectives</th>
<th>Within-session exercises</th>
<th>Between-session exercises</th>
<th>BHW session</th>
<th>Objectives</th>
<th>Within-session exercises</th>
<th>Between-session exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>Morning</td>
<td>1. Present and absent-mindedness Introduction The importance of goals in daily life Present- and absent-mindedness</td>
<td>Clapping task Present-mindedness task 1 Raisin task</td>
<td>Record slips Daily present-mindedness practice Remember workbook</td>
<td>1. Introduction</td>
<td>Introduction Basic brain anatomy and cognition Etiology of brain damage</td>
<td>Visual perception task</td>
<td>Reading assignments about Acquired brain injury Brain challenges Remember workbook</td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>2. Slip-ups Absentmindedness and slip-ups Slip-up Raising awareness of probability of slip-ups Present-mindedness</td>
<td>Clapping task revisited Present-mindedness task 2 Body scan task</td>
<td>Present-mindedness task 2 Body scan task</td>
<td>2. Neuroplasticity</td>
<td>Brain damage and assessment Importance of keeping brain active Functional assessment of brain activity Brain plasticity</td>
<td>Mental training task</td>
<td>Reading assignments neuroplasticity Brain challenges Reading assignments mental exercise and plasticity</td>
</tr>
<tr>
<td>Day 2</td>
<td>Morning</td>
<td>3. Stop the Automatic Pilot The Mental Blackboard Defining and stopping the automatic pilot How automatic pilot can lead to errors Defining the mental blackboard (working memory) Using “STOP!” to check the mental blackboard</td>
<td>Card dealing task Clapping task with “STOP!” by participant Card dealing task with “STOP!” by trainer Present mindedness task 3 with breath focus</td>
<td>30 minute daily STOP Present mindedness task 2 Body scan task Daily present-mindedness task 3 with breath focus</td>
<td>3. Memory I</td>
<td>Review: Brain jeopardy Importance of memory Types of memory Memory processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>4. State your goal Defining goals, being sidetracked from your goal Stating goals to activate working memory representation. “STOP!” (present-mindedness)-STATE cycle</td>
<td>Complex task I Complex task II</td>
<td>Daily present-mindedness task 3, breath focus</td>
<td>4. Memory II</td>
<td>M emory and the brain How memory breaks down Functional implications of memory loss</td>
<td>Memory task</td>
<td>Reading assignments memory Brain challenges memory</td>
</tr>
</tbody>
</table>
Day 3

Morning session

5. Making decisions
- Examples of competing goals
- Understanding emotional reaction to competing goals, including indecision
- To-Do Lists in the "STOP!": STATE cycle

5. Executive functioning and attention
- Defining executive functions
- How executive functions break down
- Defining attention
- How attention breaks down

5. Problem solving task

5. Executive functioning and attention
- Defining executive functions
- How executive functions break down
- Defining attention
- How attention breaks down

5. Problem solving task

5. Executive functioning and attention
- Defining executive functions
- How executive functions break down
- Defining attention
- How attention breaks down

5. Problem solving task

Afternoon session

6. Splitting tasks into sub-tasks
- Defining overwhelming goals that require splitting
- Organizing goal hierarchies
- "STOP!": STATE-SPLIT cycle

6. Lifestyle and neuroplasticity I
- Influence of lifestyle on neuroplasticity and recovery
- Stress and brain function
- Sleep and brain function

6. Lifestyle and neuroplasticity I
- Influence of lifestyle on neuroplasticity and recovery
- Stress and brain function
- Sleep and brain function

6. Lifestyle and neuroplasticity I
- Influence of lifestyle on neuroplasticity and recovery
- Stress and brain function
- Sleep and brain function

6. Lifestyle and neuroplasticity I
- Influence of lifestyle on neuroplasticity and recovery
- Stress and brain function
- Sleep and brain function

6. Lifestyle and neuroplasticity I
- Influence of lifestyle on neuroplasticity and recovery
- Stress and brain function
- Sleep and brain function

Afternoon session

7. Emotional regulation
- Understanding the relationship between thoughts, situations and emotions (the ABC model)
- Automatic thoughts and present-mindedness
- Managing emotional situations

7. Lifestyle and neuroplasticity II
- Fatigue
- Nutrition and brain function
- Physical exercise and brain function

7. Lifestyle and neuroplasticity II
- Fatigue
- Nutrition and brain function
- Physical exercise and brain function

7. Lifestyle and neuroplasticity II
- Fatigue
- Nutrition and brain function
- Physical exercise and brain function

7. Lifestyle and neuroplasticity II
- Fatigue
- Nutrition and brain function
- Physical exercise and brain function

7. Lifestyle and neuroplasticity II
- Fatigue
- Nutrition and brain function
- Physical exercise and brain function

Afternoon session

4. Morning session

8. Check (STOP!)
- Recognizing errors in "STOP!": STATE-SPLIT cycle
- Using "STOP!" to monitor output
- Review

8. Review
- Brain jeopardy

Note.
- GMT = Goal Management Training, BHW = Brain Health Workshop
Table 4. Overview of dependent neuropsychological test variables, and cognitive functions

<table>
<thead>
<tr>
<th>Test</th>
<th>Dependent variables</th>
<th>Cognitive function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conners’ Continuous Performance Test II</td>
<td>Omission errors, commission errors, and reaction time</td>
<td>Sustained attention</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhibitory control</td>
</tr>
<tr>
<td>Color-Word Interference Test</td>
<td>Total errors condition 3 – total errors condition 1, a measure of inhibitory control. Total errors condition 4 – total errors condition 1, a measure of shifting.</td>
<td>Inhibitory control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shifting</td>
</tr>
<tr>
<td>Verbal Fluency Test condition 3</td>
<td>Sum of category and repetition errors</td>
<td>Attentional control</td>
</tr>
<tr>
<td>Trail Making Test condition 5</td>
<td>Total time</td>
<td>Motor speed</td>
</tr>
<tr>
<td>Tower Test</td>
<td>Number of rule violations, total time, and total achievement score</td>
<td>Inhibitory control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processes supported by sustained attention</td>
</tr>
<tr>
<td>Hotel Test</td>
<td>Number of tasks attempted, time allocation (total deviation from an optimal allocation of three minutes pr task)</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td>The UCSD Performance-Based Skills Assessment - UPSA</td>
<td>Total score</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memory</td>
</tr>
</tbody>
</table>

Tornås-Goal Management Training in ABI
Table 5. Scores on self-report questionnaires at baseline; BRIEF-A, DEX, CFQ, and HSCL-25

<table>
<thead>
<tr>
<th></th>
<th>GMT (n = 33) M (SD)</th>
<th>BHW (n = 36) M (SD)</th>
<th>Total M (SD)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIEF-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral regulation index</td>
<td>60.79 (10.81)</td>
<td>62.06 (11.5)</td>
<td>61.45 (11.11)</td>
<td>.64</td>
</tr>
<tr>
<td>Metacognition index</td>
<td>63.73 (9.78)</td>
<td>66.72 (9.71)</td>
<td>65.29 (9.79)</td>
<td>.21</td>
</tr>
<tr>
<td>Global executive composite</td>
<td>63.33 (9.14)</td>
<td>65.86 (10.14)</td>
<td>64.65 (9.69)</td>
<td>.28</td>
</tr>
<tr>
<td>DEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>28.88 (11.64)</td>
<td>29.53 (13.16)</td>
<td>29.22 (12.37)</td>
<td>.83</td>
</tr>
<tr>
<td>CFQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>47.87 (14.35)</td>
<td>50.22 (14.33) a</td>
<td>49.08 (14.28)</td>
<td>.50</td>
</tr>
<tr>
<td>HSCL-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>7.03 (6.77)</td>
<td>7.19 (5.99)</td>
<td>7.12 (6.33)</td>
<td>.92</td>
</tr>
<tr>
<td>Depression</td>
<td>16.76 (12.32)</td>
<td>13.89 (7.79)</td>
<td>15.26 (10.23)</td>
<td>.25</td>
</tr>
<tr>
<td>Total score</td>
<td>23.79 (18.1)</td>
<td>21.19 (12.42)</td>
<td>22.43 (15.34)</td>
<td>.49</td>
</tr>
</tbody>
</table>

Note. a) N = 35, b) N = 31. GMT = Goal Management Training; BHW = Brain Health Workshop; BRIEF-A = Behavior Rating Inventory of Executive Function Adult version; DEX = Dysexecutive Questionnaire; CFQ = Cognitive Failures Questionnaire; HSCL-25 = Hopkins Symptom Checklist 25. BRIEF-A scores are norm-referenced T scores (M = 50, SD = 10), with higher scores indicating greater impairment. DEX scales, CFQ total scores, and HSCL-25 are raw scores, with higher scores indicating greater impairment.
Table 6. Standardized neuropsychological test scores at baseline

<table>
<thead>
<tr>
<th>Neuropsychological tests (M ± SD)</th>
<th>GMT (n = 33)</th>
<th>BHW (n = 37)</th>
<th>Total (n = 70)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASI FSIQ</td>
<td>104.94 (13.46)</td>
<td>103.76 (12.03)</td>
<td>104.31 (12.65)</td>
<td>.70</td>
</tr>
<tr>
<td>WASI VIQ</td>
<td>102.91 (15.81)</td>
<td>100.73 (14.51)</td>
<td>101.76 (15.06)</td>
<td>.55</td>
</tr>
<tr>
<td>WASI PIQ</td>
<td>106.42 (13)</td>
<td>105.03 (15)</td>
<td>105.89 (14.01)</td>
<td>.68</td>
</tr>
<tr>
<td>CVLT-II Total Score</td>
<td>42.67 (13.18)</td>
<td>46.41 (16.26)</td>
<td>44.64 (14.9)</td>
<td>.30</td>
</tr>
<tr>
<td>CVLT-II Delayed Recall</td>
<td>39.7 (14.03)</td>
<td>46.08 (15.86)</td>
<td>43.07 (15.26)</td>
<td>.08</td>
</tr>
<tr>
<td>BVMT-R Total Score</td>
<td>34.24 (11.74)</td>
<td>38.11 (14.31)</td>
<td>36.26 (13.19)</td>
<td>.23</td>
</tr>
<tr>
<td>BVMT-R Delayed Recall</td>
<td>39.52 (15.18)</td>
<td>40.86 (16.05)</td>
<td>40.23 (15.54)</td>
<td>.72</td>
</tr>
<tr>
<td>Letter-Number Sequencing (WAIS-III)</td>
<td>44.55 (8.13)</td>
<td>42.38 (10.14)</td>
<td>43.45 (9.2)</td>
<td>.34</td>
</tr>
<tr>
<td>Digit Span Total Score (WAIS-III)</td>
<td>45.21 (6.18)</td>
<td>42.97 (7.87)</td>
<td>44.03 (7.16)</td>
<td>.19</td>
</tr>
<tr>
<td>CPT-II Omissions</td>
<td>66.52 (40.13)</td>
<td>63.06 (63.98)</td>
<td>64.74 (53.38)</td>
<td>.79</td>
</tr>
<tr>
<td>CPT-II Commissions</td>
<td>59.85 (13.22)</td>
<td>53.76 (9.99)</td>
<td>56.71 (11.98)</td>
<td>.04*</td>
</tr>
<tr>
<td>CPT-II Hit RT</td>
<td>54.81 (10.24)</td>
<td>58.56 (13.83)</td>
<td>56.74 (11.17)</td>
<td>.17</td>
</tr>
<tr>
<td>Tower Test Total Achievement Score</td>
<td>10.48 (3.08)</td>
<td>10.27 (2.61)</td>
<td>10.37 (2.82)</td>
<td>.75</td>
</tr>
<tr>
<td>Trail Making Test condition 4</td>
<td>45.06 (11.01)</td>
<td>44.41 (12.11)</td>
<td>44.71 (11.53)</td>
<td>.81</td>
</tr>
<tr>
<td>CWI 3</td>
<td>47.5 (10.95)</td>
<td>47.56 (9.13)</td>
<td>47.53 (9.95)</td>
<td>.98</td>
</tr>
<tr>
<td>CWI 4</td>
<td>46.25 (11.79)</td>
<td>44.86 (11.46)</td>
<td>45.51 (11.55)</td>
<td>.62</td>
</tr>
<tr>
<td>VFT 3</td>
<td>43.15 (10.37)</td>
<td>44.47 (10.74)</td>
<td>43.84 (10.51)</td>
<td>.61</td>
</tr>
</tbody>
</table>

Note. a) N =32, b) N =36, c) N =34, d) N =35. All scores reported are standardized scores. Higher scores represent better performance, except for scores on the CPT-II where T scores above 60 indicate poor performance. GMT = Goal Management Training; BHW = Brain Health Workshop; WASI FSIQ = Wechsler Abbreviated Scale of Intelligence Full Scale Intelligence Quotient (M =100, SD =15); WASI VIQ = Wechsler Abbreviated Scale of Intelligence Verbal Intelligence Quotient (M =100, SD =15); WASI PIQ = Wechsler Abbreviated Scale of Intelligence Performance Intelligence Quotient (M =100, SD =15); CVLT-II = California Verbal Learning Test II (M =50, SD =10); BVMT-R = Brief Visuospatial Memory Test Revised (M =50, SD =10); WAIS-III = Wechsler Adult Intelligence Scale III (M =10, SD =3); CPT-II = Conners Continuous Performance Test II (M =50, SD =10); RT = reaction time; Subtests from Delis-Kaplan Executive Function System (M =10, SD =3); CWI 3 = Color Word Interference Test condition 3, CWI 4 = Color Word Interference Test condition 4, VFT 3 = Verbal Fluency Test condition 3, Category switching.
Table 8. Mean scores on outcome data by time for GMT group and BHW group, with time and group by time effects.

<table>
<thead>
<tr>
<th>Test</th>
<th>Group</th>
<th>Time, and group by time effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment</td>
<td>GMT M (SD)</td>
</tr>
<tr>
<td>CPT-II Omission errors</td>
<td>Baseline</td>
<td>(n = 30)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>4 (7.04)**</td>
</tr>
<tr>
<td>Commission errors</td>
<td>Baseline</td>
<td>(n = 30)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>.17 (1.18)*</td>
</tr>
<tr>
<td>Hit RT (ms)</td>
<td>Baseline</td>
<td>(n = 30)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>.49 (.89)*</td>
</tr>
<tr>
<td>CWI Total errors in condition 3 - condition 1</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>.69 (1.02)</td>
</tr>
<tr>
<td>Total errors in condition 4 - condition 1</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>451.14 (140.88)**</td>
</tr>
<tr>
<td>VFT 3 Total number of errors</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>19.03 (4.21)*</td>
</tr>
<tr>
<td>Tower Test Number of rule violations</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>12.48 (13.31)**</td>
</tr>
<tr>
<td>Total Errors</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>4.74 (.63)*</td>
</tr>
<tr>
<td>Hotel Task No. of tasks attempted</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>393.32 (191.57)*</td>
</tr>
<tr>
<td>Deviation from optimal time (s)</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>23.19 (3.79)</td>
</tr>
<tr>
<td>UPSA Total score</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>33.37 (18.55)</td>
</tr>
<tr>
<td>TMT 5 Motor speed condition (s)</td>
<td>Baseline</td>
<td>(n = 31)</td>
</tr>
<tr>
<td></td>
<td>Post-intervention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
<td>.49 (.89)*</td>
</tr>
</tbody>
</table>

Tornås-Goal Management Training in ABI
Note. GMT = Goal Management Training; BHW = Brain Health Workshop. All scores are raw scores. Time is reported in milliseconds (CPT-II), and seconds (Tower test, Hotel Task, and Trail Making Test condition 5). CPT-II = Conners’ Continuous Performance Test; CWI = Color Word Interference Test; VFT 3 = Verbal Fluency Test condition 3; TMT = Trail Making Test condition 5; Total Errors = Sum of errors CPT-II, TMT1-4, VFT1-3, CWI1-4, number of rule violations Tower Test; UPSA = UCSD Performance-Based Skills Assessment. Significant effects are in comparison to baseline *p < .05; **p < .01; ***p < .001. All F-tests use Wilks’ lambda statistic. N’s are provided as data were missing for certain measurements. Ms = milliseconds; s = seconds.
Figure 1. Consort diagram.