
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/115123/

Deposited on: 20 January 2016
Highlights

- The Banda Alta Member BIF precipitated in a redox-stratified seawater basin influenced by metal-enriched, anoxic seawater in the lower zone and diluted, oxic continental solutes from melting glaciers and rivers in the upper zone.

- Complex BIF stratigraphy with carbonate-rich and silica-rich facies and resedimented diamictites and hematite muds are a response to juxtaposing glacial advance/retraction cycle and glacial isostatic adjustment.

- Microbial activity facilitating calcium carbonate spheroids and mats and negative δ^{57}Fe values in BIF in relatively shallow water above a redoxcline.

- LREE/HREE fractionation, Ce_{PAAS}-anomaly, Y/Ho, base metals abundances, Zn/Co, as well as C and Fe isotopes are combined to distinguish following metal sources: (1) redox-stratified Neoproterozoic seawater, (2) metal-enriched fluids derived from altered crust, (3) oxidized continental solutes, and (4) terrigenous detritus.
Multiple metal sources in the glaciomarine facies of the Neoproterozoic Jacadigo iron formation in the “Santa Cruz deposit”, Corumbá, Brazil

Thomas Angerer¹*, Steffen G Hagemann², Detlef Walde³, Galen P Halverson⁴, Adrian J Boyce⁵

¹ Institute of Mineralogy and Petrography, University of Innsbruck, Austria
² Centre for Exploration Targeting, University of Western Australia (UWA), Perth, Australia
³ Instituto de Geociências, Universidade de Brasília (UnB), Brasília, Brazil
⁴ Department of Earth & Planetary Sciences, McGill University, Montreal, Quebec/Canada
⁵ Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Great Britain

*corresponding author: thomas.angerer@uibk.ac.at (address: University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria)

Abstract

The Rapitan-type banded iron formation (BIF) in the Banda Alta Formation (Fm) of the Neoproterozoic Jacadigo Group in Brazil was deposited in a redox-stratified, marine sub-basin, which was strongly influenced by glacial advance/retraction cycles with temporary influx of continental freshwater and upwelling metal-enriched seawater from deeper anoxic parts. These new finding are based on new stratigraphic, whole-rock geochemical, and stable Fe and C isotope data from the “Santa Cruz” hematite deposit near Corumbá, Mato Grosso do Sul, where a
stratigraphy of lower and upper dolomite-rich and intermediate chert-rich BIF facies with up to
three intercalated diamictites is revealed. The Ca-Mg-Fe-Mn-carbonate-chert and chert BIF
(~30-45 wt% Fe) of the lower dolomite-rich facies shows chemical signatures consistent with
well-oxidized seawater, i.e. low (Pr/Yb)_PAAS, strong negative Ce_PAAS-, and positive Gd_PAAS- and
Y_PAAS-anomalies, as well as negative-δ¹³C carbonate typical for Neoproterozoic glaciogenic
carbonates. Sedimentation in a rather shallow water depth during relatively warm interglacial
periods was likely influenced by abundant freshwater from fluvial runoff and melting
icebergs. In such conditions abundant microbial activity accommodated CO₂ sequestration in
carbonates as spheroids and mats and fractionated δ⁵⁷Fe (-2.6 and -1.2‰) in primary Fe-
hydroxides. In contrast, the intermediate chert-rich facies, characterized by chert-hematite BIF
(~35-55 wt% Fe) and isolated hematite chert and hematite mud, recorded trace element
signatures of non-oxidized (absence of Ca anomalies and variable Y_PAAS-anomalies), more
metal-enriched (Fe, Mn, Si, Ni, Zn, Pb, U) seawater, thus deposition was within and below the
shallow-level redoxcline during ice cover. Colder water and isolation from sunlight reduced
microbial activity, and thus an almost non-fractionated δ⁵⁷Fe (-0.7 to 0.0‰) fluid signature
reveals that hydrothermal (MOR) vents or (sub-) seafloor alteration of mafic or felsic rocks, or
shales fertilized seawater with metals. All results lead to the model that the Jacadigo Group
formed during one major marine transgression-regression cycle, and BIF facies in the Banda Alta
Fm were a response to first- and second-order periodic variations of the depth of the redoxcline,
induced by the juxtaposition of glacial advance/retraction cycles, active graben tectonics, and
glacial isostatic adjustment or eustatic water level changes. The chert-rich BIF facies marked the
maximum of transgression. Age and tectonic setting of the Jacadigo basin remains contentious: it
may represent a continental back arc basin of the Brasiliano collision zone (~590 Ma), in which
submarine alteration was possibly related to low-temperature hydrothermal fluids moving
through the active graben system (as an alternative to basin-wide benthic pore water flux). This
would place the Jacadigo group to the suite of Ediacarian “Gaskier” glaciations, although a
relationship to the Marinoan glaciation (660-635 Ma), mainly based on the published
sedimentation age-bracket of 706-587 Ma, is also possible.

Keywords: Neoproterozoic glaciation; Jacadigo Group; Rapitan-type banded iron formation;
rare earth elements; Fe isotopes

1. Introduction

1.1. BIF-hosted iron ore in the Neoproterozoic glaciogenic context

Banded and granular iron formation (BIF and GIF) are abundant in Archean to earliest
Paleoproterozoic (volcano-) sedimentary successions. No significant iron formation occurs in the
rock record between 1.8 Ga and 0.7 Ga, but BIF reappeared in many Neoproterozoic
sedimentary successions, most of them associated with Sturtian (ca 715-680 Ma) and Marinoan
(ca 660-635 Ma), and some with the Ediacarian (e.g., Gaskier: ~585-582 Ma: Bowring et al.,
2003) glacial events (Hoffman et al., 2011). BIF are widely accepted as chemical proxies of the
ancient marine hydrosphere, as these rocks recorded the seawater chemistry from which they
were precipitated. Correspondingly, the association of those chemical sediments with
Neoproterozoic glacial deposits provide critical evidence for Neoproterozoic syn- and post-
glaciation climate (Hoffman et al., 2011). Although the concurrent records of Neoproterozoic
glaciogenic sediments is a central component of the snowball Earth model (Hoffman et al., 1998
and references therein), there is a recognition now that the Neoproterozoic BIF occurrence is a
result of a culmination of controls, including metal-fertilization of local sub-basins (Cox et al.,
2013). One of the most significant Neoproterozoic BIF occurs in the Jacadigo Group near
Corumbá, Mato Grosso do Sul, Brazil, but nevertheless its depositional age and exact setting
remain contentious (c.f., Walde and Hagemann, 2007). A simplified glaciomarine Fe and Mn ore
model for the Morro do Urucum deposit proposed by Schneider (1984) and Schreck (1984) and
later summarized by Urban et al. (1992) is widely accepted. Klein and Ladeira (2004)
subsequently supported this model with trace geochemical and carbon isotope data from the
same locality. A non-glaciogenic deposition model has been proposed by Freitas et al. (2011).
The “Santa Cruz deposit” at the eastern edge of the Urucum inselberg massif (Figure 1),
currently owned by Vetria Mineração, is a well-developed exploration project in terms of map
and core availability. It represents a perfect natural laboratory to investigate the controversial
BIF deposition. Here we present new field observations including detailed diamond core logs,
petrographical, geochemical, and Fe and C isotope data. Based on this new data we propose a
chemostratigraphic model for the local BIF facies.

1.2. **Geology of the Corumbá region**

The Corumbá region is located on the eastern edge of the Amazon craton-Rio Apa block, about
20-30 km west of its tectonic contact with the Brasiliano Paraguay belt (Figure 1a). In this
region, two sets of extensional structures are identified: the poorly exposed eastern extremity of
the WNW-ESE-trending, 500 km long, Chiquitos-Tucavaca aulacogen (a failed rift arm) and the
NE-SW-trending, 10-20 km long, Corumbá graben system (Jones, 1985). In the Corumbá area, two lithostratigraphic groups have been distinguished: the Jacadigo and Corumbá Groups (de Almeida, 1945; Dorr II, 1945). A stratigraphic correlation of the Jacadigo with the Boqui Group in Bolivia (Figure 1b) has been established (Graf Jr et al., 1994). According to Dorr II (1945) the Jacadigo Group consists of three formations, the Urucum, the Córrego das Pedras, and the Banda Alta Fms. The Urucum Fm consists of coarse arkoses and conglomeratic sandstones and unconformably overlies the basement of the Amazon craton-Rio Apa block. The Córrego das Pedras Fm consists of variable siliciclastic rocks and hosts a basal manganese ore layer. The Banda Alta Fm is made up of hematite-rich BIF with intercalated sandstones, arkoses, diamicrites, and manganese ore. In the Banda Alta Fm, dropstones have been identified in BIF and Barbosa (1949) suggested a glaciogenic origin of these rock features. In the alternative lithostratigraphy of de Almeida (1945), rocks of the intermediate Córrego das Pedras Fm are subsumed into the Urucum Fm, and the Banda Alta Fm equals the Santa Cruz Fm (hence the given name of the hematite deposits). In the present publication the subdivision of Dorr II (1945) is used, mainly to avoid any confusion regarding the use of “Santa Cruz”. The Corumbá Group, unconformably overlying the truncated Banda Alta Fm, is made up of dolostones in the lower Bocaina Fm, and limestones in the upper Tamengo Fm. The Tamengo Fm contains an Ediacara-like fauna (Walde et al., 2015, and references therein). Unequivocal depositional ages, and therefore evidences for a correlation with globally occurring ice ages, are not available for the Jacadigo Group. Basement granites have igneous K/Ar age of ca. 889 ± 44 Ma (Hasui and Almeida, 1970), providing a maximum age for overlying sedimentary rocks. The Banda Alta Fm BIF has been interpreted as largely coeval to the glaciomarine diamicrites of the Puga Formation to the South, which has a maximum age (based
on detrital zircons) of 706 ± 9 Ma (Babinski et al., 2013). In Bolivia, the Pimienta Fm, which is possibly a lower part of the Boqui Group (therefore potentially correlative with the Jacadigo Group), consists of tuffs, agglomerates, lapilli, and volcanic breccias of basaltic composition (O'Connor and Walde, 1985; Litherland et al., 1986). Associated plutonic rocks have a lower Ediacarian K/Ar age of 623 ± 15 Ma (Walde, 1988). However, inclusion of the Pimienta Fm in the Jacadigo Group remains hypothetical. A minimum age for the Jacadigo Group of 587 ± 7 Ma was recently obtained by 40Ar/40Ar dating of diagenetic cryptomelane in the Mn-formation at Morro do Urucum (Piacentini et al., 2013). Based on stratigraphical, sedimentological and structural data, Trompette et al. (1998) suggested the following evolution for the Neoproterozoic sequences in the Corumbá region: During the late Cryogenian or early Ediacarian (ca 600-570 Ma), extensional tectonics generated a system of grabens parallel to the border of the Amazon craton. This extensional event was probably synchronous with early stages of the Brasiliano collision, which has been dated at ~590 Ma (Pimentel and Fuck, 1992; Pimentel et al., 1996). This relationship and timing suggest a sedimentation during the Ediacaran period, and assuming that the diagenetic-metamorphic sequence commenced shortly (ca. <10 Ma) after deposition, the published minimum depositional age of 587 ± 7 Ma (Piacentini et al., 2013) agrees with this. A deposition of the Jacadigo Group associated with the Marinoan glaciation lacks unequivocal, direct geochronological evidences, too, but is suggested by the 623 ± 15 Ma age of the Pimienta Fm, considering a correlation with the Boqui Group. Even a Sturtian age cannot be ruled out based on the hypothetical correlation with the Puga Fm, as proposed by Hoffman and Li (2009). For comparison, the Rapitan IF in the Mackenzie Mountains, northwest Canada, is with its 716.5 ± 0.2 Ma age (U/Pb zircon date: Macdonald et al., 2010) a Sturtian deposit.
Transgression of glacioeustatic origin initiated the deposition of dolostones of the Corumbá Group during the Ediacarian age (Trompette et al., 1998). Weak NNW-SSE trending folds, probably synchronous with deformation and metamorphism in the Paraguay belt (545-500 Ma), affected the Jacadigo and Corumbá Groups (D’el-Rey Silva et al., in press). Finally, Pliocene (ca 3 Ma) tectonic inversion of the graben system and development of the present inselberg topography (the Urucum massif) are correlated to the subsidence of the basement and formation of the Pantanal basin (Ussami et al., 1999). The flat to shallowly south-easterly dipping BIF in the “Santa Cruz deposit” represents the south-easternmost extension of the Urucum inselberg massif (Figure 2a).

2. Geological setting of the “Santa Cruz deposit”

2.1. Stratigraphic column

Based on mapping and core logging a generalised stratigraphic profile of the “Santa Cruz deposit” was constructed (Figure 3). Siliciclastic units of the Urucum Fm, the Córrego das Pedras Fm, or diamictite of the Banda Alta Fm, all sensu Dorr II (1945), rest unconformably above a gneissic basement high of the Rio Apa Block. The Urucum Fm is characterised by grey-green, fine to medium-coarse-grained siliciclastic rocks with calcitic cement, locally displaying cross-bedding and inverse grading characteristic of a fluvial environment. Minor chert-siderite-magnetite-hematite BIF is present in the Urucum Fm. The Córrego das Pedras Fm is defined by sandstones, arcoses, micro-conglomerates, and up to three layers (each <2m) massive Mn-oxide or Mn-rich arcoses (cryptomelane-braunite-dominated: Piacentini et al., 2013). The sequence
with four well defined Mn-rich horizons described at Morro do Urucum (Dorr II, 1945) and being mined is not encountered in the “Santa Cruz deposit”.

The Banda Alta Fm hosts dolomite-chert-hematite BIF in a lower and upper carbonaceous zone, and jaspilitic chert-hematite BIF in an intermediate siliceous zone. BIF with clastic layers are subordinately dispersed in the column. Diamictite units are discontinuously intercalated in BIF and have thicknesses up to a few decametres. The upper diamictite and its dolomite-rich BIF footwall are the highest preserved units of the Banda Alta Fm in the deposit and is located only in eastern portion of the deposit (see e.g., STCR-DD-28-24 and STCR-DD-26-22 in Figure 4a, and STCR-DD-68-24 in Figure 4b). The uppermost sequence of the Banda Alta Fm is completely eroded in the region. Despite local evidence of compression (see following section), no significant tectonic duplication of the stratigraphy is observed in the deposit, allowing a thickness estimating of the Banda Alta Fm BIF to be 360 metres. This is compatible to Morro do Urucum (>300 metres according to Dorr II, 1945).

The lower, discontinuously developed, reddish ferruginized diamictite has a hematite-calcitic cement-matrix. The ferruginized middle diamictite, with a hematite-silicate cement-matrix, is a well-developed marker horizon throughout the deposit (see marker lines in Figure 4). The largely non-ferruginized upper diamictite has a silt-calcite-chlorite cement-matrix, local ferruginization is present close to intraformational cherts and footwall BIF. Its lateral continuation is unclear due to erosion.

The middle diamictite is stratigraphically enveloped by typical footwall and hanging wall facies: a hematite rock (“hematite mud”) forms the immediate one to two metres below the diamictite, and a hematite chert (or “hematite silt”?) is developed in the hanging wall, commonly as a decimetre to metre thick unit. The footwall hematite mud shows both, laminated or massive-
brecciated texture; the latter being rich in randomly oriented chert-mesoband fragments and a
featureless hematite matrix. Such a reworked breccia facies suggests a high-energy deposition of
overlying diamictite flows, whereas the laminated type indicates less impact of the diamictite
flow. The hanging wall hematite chert is intercalated with BIF and therefore represents a
transition from diamict clastic environment to chemical sedimentation of the hanging wall
jaspilitic BIF. Locally, decimetre to metre thick units of hematite chert and muds are intercalated
and interfingered within the BIF. Hematite chert is limited to intermediate siliceous zone,
whereas hematite muds also has carbonate components when located within the lower and upper
carbonaceous zone.

2.2. **Deformation sequence**

In the region of the “Santa Cruz deposit”, the Neoproterozoic rocks of the Jacadigo Group are
deformed by a set of tectonic structures (D1, D2, D3, and D4: D‘el-Rey Silva et al., in press). An
early D$_{x-1}$ is recorded as extentional graben structures associated with the opening of the
Chiquitos-Tucavaca aulacogen parallel to the border of the Amazon craton with the Rio Apa
block (Trompette et al., 1998). According to these authors, sedimentation of the Urucum Fm, and
probably also the Banda Alta Fm, were coeval with the active graben teconics, leading to
variable stratigraphic thicknesses throughout the depsoitional basin (Trompette et al., 1998). The
D$_1$ is related to the diagenetic to very-low grade metamorphic burial. The D$_{1a}$ is represented in
BIF by ptygmatic crenulated, chert veinslets. A D$_{1b}$-foliation (S_{1b}) is ubiquitously present in
siliciclastic rocks as a pervasively developed foliation and in BIF by shape prefered orientation
of hematite and oblate flattened clastic and diagenetic nodules. The D$_2$ to D$_3$ events are
associated with the tectonic evolution of the Paraguay and Tucavaca tectonic belts bordering the
Amazon Craton. The D_2 brittle-ductile deformation event led to the local thrusting of the Urucum over the Banda Alta Fm. Parts of the thrust slice is preserved in the eastern section of the deposit and is characterized by highly asymmetric, tight to isoclinal, F_2 folds (D'el-Rey Silva et al., in press). The D_3 open folding event comprises crustal shortening phases related to the Paraguay tectonic belt (NW-SE) and the closure of the Tucavaca failed rift basin (SW-NE) (D'el-Rey Silva et al., in press). The D_4 event is interpreted as the result of Pliocene (at ca. 3 Ma) block tectonics (c.f., Shiraiwa, 1994).

3. Sample selection and analytical methods

Drill core logging and grab sampling from drill core and outcrop was carried out by the authors during field work in 2013. Sampling was limited to unweathered BIF (avoiding those with clastic bands), hematite “mud”, and hematite chert in the lower and intermediate zone, focusing on the facies transition from carbonaceous to siliceous BIF and investigating the role of chert- and hematite-rich endmember facies. Each analytical method (whole-rock geochemistry, Fe and C isotopes) was applied to a specific sample subset where the comparability between samples representing a specific lithology and stratigraphic position is given. Table 1 provides a list of samples and methods used and Figure 5 shows the sample locations.

3.1. Whole-rock geochemical analyses

The grab sampling strategy for the analyses of major elements, trace and rare earth elements (based on 0.5 to 0.8 kg aliquots) targeted specific lithologies, which are represented by eleven samples: five banded and podded chert-hematite BIF (CaO < 2.1 wt%), three banded and podded dolomite-chert-hematite BIF, two hematite muds, and one hematite chert (Table 1). Analyses
were performed by ActLabs Pacific Pty. Ltd. facility in Ancester, Canada. Samples were
crushed, split into fractions using a rifle splitter, and then pulverized in a mild carbon steel mill
(95% passing at 75 \(\mu \)m). Contamination during carbon mild steel pulverization is minor (<0.2%
Fe, traces of C, Mn, Si, Cr, Co). Cross-contamination between samples was minimized by
repeated silica washes. Sixty elements were analyzed by a combination of digestion and
analytical methods in order to determine the geochemical abundance using the most appropriate
method for each element or groups of elements. Loss of ignition (LOI) was determined at
1000°C. ActLabs includes certified reference materials and duplicates into the analyzed batch for
quality control. Additionally, pre-milled certified reference material, BIF standard FER-3
(Alexander and Bau, 2009), was submitted together with the sample suites. The accuracy and
precision of ActLabs Pacific Pty. Ltd. is monitored since several years using this standard, and
monitoring data can be obtained from the first author. Data and calculated indices are provided in
Table 2.

3.2. **Fe isotopes in hematite**

Five hematite samples from selected lithologies were analyzed for stable Fe isotopes at McGill
University, Canada. Parts of nodule-free hematite bands from BIF samples were isolated using a
saw, then pulverized, and then treated for 0.5 hours in a warm 20% diluted HCL bath to dissolve
any minor dolomite (~<5 wt%). Various studies have indicated that no discernible fractionation
of iron phases is associated with acid treatment (Skulan et al., 2002; Beard and Johnson, 2004;
Severmann et al., 2006). Samples were analyzed at Geotop/UQAM in Montreal, Canada,
according to the methods used in Halverson et al. (2011). Approximately 10 mg of pulverized
samples were weighed into a Savillex Teflon beaker and dissolved for 24 hours at 80 °C in a 2
mL mixture of double-distilled 6 M HCl and concentrated HNO₃ and HF. The samples were then evaporated to dryness with excess HNO₃, then redissolved in 2.0 mL of 2 M HCl. Samples were again dried and then taken up in 0.5 mL of 6 M HCl for ion exchange chromatography. Fe was separated using Bio Rad AG1 X4, 200–400 mesh resin loaded into custom Teflon columns and separated from the matrix using 6 M HCl. Purified iron was eluted from the columns in 2 M HCl, which was then dried down and taken up in 0.5 M HNO₃. Solutions were analyzed in the Geotop Radiogenic isotope laboratory at the Université de Québec à Montréal on a Nu Instruments Nu Plasma II in high-resolution mode via wet sample introduction. Instrumental mass bias was corrected by using the standard-sample-standard protocol, whereby delta values are calculated for each individual sample analyses against the average of standards before and after. Samples were analyzed three times each, yielding typical 1-sigma errors of <0.1 for δ⁵⁷Fe and <0.05 for δ⁵⁶Fe. The data are reported in standard delta notation (per mil units) relative to the IRMM-14 reference standard.

3.3. **C isotopes in carbonate**

Six carbonate mineral separates from dolomite-rich BIF were analyzed for stable C isotopes at SUERC (Scottish Universities Environmental Research Centre), University of Glasgow. Samples were analyzed at SUERC (Scottish Universities Environmental Research Centre), University of Glasgow, on an Analytical Precision AP2003 mass spectrometer equipped with a separate acid injector system, after reaction with 105% H₃PO₄ under a He atmosphere at 70 °C. Isotopic results are reported using the conventional δ‰-notation. Mean analytical reproducibility based on replicates of the SUERC laboratory standard MAB-2 (Carrara Marble) was around ±0.2‰ for both carbon and oxygen. The δ¹³C are reported relative to V-PDB.
4. Petrography

4.1. Dolomite-chert-hematite BIF and chert-hematite BIF

Dolomite-chert-hematite BIF in the lower and upper carbonaceous zone consists of hematite layers and carbonate-chert layers, which are locally weakly podded or rich in nodules (Figure 6a, b). Typically, gangue microbands are <0.5 cm thin and mesobands 0.5 to ~5 cm thick and consist of fine to granoblastic, white to yellow dolomite-chert matrix and mm to sub-cm dolomite “intra-band” nodules (Figure 6a). So-called “inter-band” textures forming nodular iron formation, as shown in Figure 6b, are less common. It is likely that this pseudonodular texture formed by viscose mobility of the non-mixing components iron hydroxides and carbonate-chert mix, probably under pressure-induced thixotropic behavior during early diagenesis (c.f., Owen, 2003).

Dolomite and chert may form distinct bands (Figure 6c, here folded at the microscale) and nodules (Figure 6d), or are interlocked forming mixed carbonate-chert matrices (Figure 6e). In these matrices, dolomite shows subhedral rhombic or granoblastic textures that partially overgrow chert (Figure 6e), thus dolomite and chert are texturally not in equilibrium. This suggests post-sedimentary in-situ growth (ripening?) of carbonate crystals and may be related to a diagenetic dolomitization event (see section 10.2 for discussion). Routine mineral staining and SEM mineral chemistry (authors’ unpublished data) show variable Mn-Fe-content in all dolomite and minor Mn-calcite associated with dolomite. Collected dolomite-chert-hematite BIF samples are limited to unweathered banded and podded textures. This is to obtain a most-pristine BIF sedimentation-record in BIF samples across the transition from the lower carbonate- to intermediated chert-facies zone.
Jaspilitic chert-hematite BIF is commonly podded and only locally shows well-banded textures (Figure 7a, b). Chert-rich BIF show far less nodules in the gangue layers than the dolomite-chert-hematite BIF. The gangue matrix is a fine-grained, red cryptocrystalline hematite-impregnated chert (Figure 7c). The typical podding texture in unweathered chert-rich BIF is a result of removal of gangue (“dissolution-podding”), which is identified by dissolution seams parallel to bedding tracing the former mesoband (Figure 7b). Podded textures are less well-developed in the dolomite-hematite BIF of the lowermost Banda Alta Fm.

Hematite mesobands in all BIF are commonly a fine mix of anhedral hematite to microplaty hematite and minor gangue, i.e., chert or dolomite, or dolomite-chert (Figure 7d). The hematite grain sizes are commonly less than 20 μm, however single grains are fused to anhedral-massive or cellular aggregates (Figure 7e), giving the macroscopic metallic lustre to the hematite mesobands. Also, the microplaty hematite-rich textures may show lepidoblastic orientation of crystal shapes parallel to bedding (Figure 6f). This compaction fabric was generated by hematite re-orientation and/or growth most likely during late diagenesis. Dolomite and chert nodules are variously hematite-altered showing red, dusty, cryptocrystalline hematite or dense aggregates of finely intergrown microcrystalline hematite with metallic lustre.

Common, but heterogeneously distributed in gangue mesobands of all Banda Alta Fm BIF types, are microscopic spheroids up to 400 μm diameter (Figure 7e). These spheroids consist of secondary, concentric and/or radial symmetric, chert or dolomite, and are locally hematite-stained (Figure 7f).
4.2. Hematite chert and mud

The hematite chert is a banded-laminated to nodular-laminated type rock, characterized by less than 0.5 cm thick jaspilitic chert laminae alternating with thin hematite-rich laminae (<mm) (Figure 8a). Few isolated clast-like hematite grains suggest some influence of (hematitic?) detritus (Figure 8b). Hematite in the chert is commonly present as 10-20 µm small, chert-inclusion-rich, globular grains, and locally they form randomly oriented chains (or “needles”) or aggregates (Figure 8c). Such hematite-“needles” may represent hematite-replaced fibrous silicates, which are typical for diagenetic to low-metamorphic Archean and Paleoproterozoic BIF (Klein, 1974; Klein, 2005). Hematite grains may also form layers of larger anhedral aggregates (Figure 8d).

Hematite muds are laminated or massive rocks with up to ~66 wt% Fe. There is a near absence of dolomite-chert gangue layers, only local chert lenses are observed (Figure 8e). The laminated texture is defined by alternating, bedding-parallel, hematite laminae of variable grain sizes and shapes. Three distinct hematite mud types are delineated: (1) reworked hematite mud (sample H-01): this mud is present just below the middle diamictite, as the hematite-rich endmember of breccia-muds that commonly contain fractures of chert layers. The texture in sample H-01 resembles a clastic texture of fused hematite grains that are oriented parallel to the bedding (Figure 8f). In some bands, hematite is completely fused leaving only relics of hematite clasts (Figure 8g). The overall clastic texture of this hematite mud type and the association with breccias provides evidence for a reworked nature. (2) chemical mud sediment (C-18): This mud is characterized by granoblastic hematite texture with distinct layers of variable grain sizes (Figure 8h). Textures do not provide evidence for clastic nature and the mud was probably...
chemically precipitated, as the Fe-rich endmember of BIF. This is supported by the stratigraphic
association with BIF. (3) leached-type hematite rock (not sampled): A completely different type
of hematite rock is the leached type. The leached-type hematite rocks can be identified by
dissolution seams at the edges of remnant gangue lenses and between hematite laminae. This
lithology was generated by secondary, probably hypogene and supergene, silica or carbonate
loss. The rock type is not part of the present investigation.

5. Major element geochemistry

5.1. Dolomite-chert-hematite BIF and chert-hematite BIF

Chert-hematite BIF (with CaO <2.1 wt%) show Fe contents of 45 to 56 wt% and define a
negative linear correlation with SiO$_2$ (Figure 9a). Dolomite-chert-hematite BIF have on average
lower Fe, Si, and Al contents compared to chert-hematite BIF, whereas Ca, Mg, and LOI are
significantly enriched due to the abundance of dolomite (Figure 9b, c; for LOI see Table 2). All
BIF samples have very low Al and Ti concentrations (Al$_2$O$_3$ <0.25 wt %, TiO$_2$ <0.031 wt%) and
a positive correlation of both elements suggest that both derive from minor detrital components
(Figure 10a). The limited number of samples suggests that podded BIF have higher Fe contents.
Dissolution-podding of chert-hematite BIF is, therefore, associated with Fe upgrade from about
~35 wt% to up to 55 wt% in the unweathered section of the deposit.

The P$_2$O$_5$ content in dolomite-chert-hematite BIF is high with 0.36 to 0.38 wt% and low in chert-
hematite BIF (<0.2 wt%). This corresponds to apatite abundances in the rocks (not shown in the
petrography section). The dolomite-chert-hematite BIF have CaO/MgO ratios of 2.3 to 3.2,
whereas the chert-hematite BIF have higher ratios of 3.0 to 9.0. Overall mean value is ~4.0,
which is much higher than in pure dolomite (1.4) and a result of Fe- and Mn-bearing dolomite, and Mn-calcite, and apatite abundance.

5.2. **Hematite chert and mud**

The hematite chert sample H-03 is significantly depleted in Fe compared to other samples (Figure 9a, Table 2). Consistent with the silica-dominated mineralogy, dolomite and apatite related elements CaO, MnO, MgO, P$_2$O$_5$, and LOI are lowest in the sample set. Also, terrigenous Al and Ti are very low and thus, despite its stratigraphic position overlying the clastic middle diamictite, a dominantly chemical nature is suggested.

The two analyzed hematite mud samples have Fe grades of 58.7 and 66.3 wt% (Figure 9a, Table 2). In the slightly lower Fe grade sample H-01, the sum of MnO, MgO, CaO, P$_2$O$_5$, LOI is 0.55 wt%, whereas in contrast, the higher Fe grade sample C-18 shows a sum of 1.7 wt%. This elemental pattern is consistent with the association of the samples with dolomite-chert-hematite BIF (sample C-18) and chert-hematite BIF near the middle diamictite (sample H-01). However, whole-rock geochemistry is not indicative for the genesis of the two distinct samples (i.e., reworked clastic mud and chemical precipitated mud).

6. **REE and trace metal geochemistry**

6.1. **Two distinct signature in BIF (REE I and II)**

The BIF samples and hematite mud sample C-18 reveal two distinct Post Archean Australian Shale (PAAS)-normalized REE fractionation patterns (referred to REE I and REE II). The REE I, represented by dolomite-chert-hematite (samples C-04, C-05, C-07) and podded chert-hematite BIF (samples C-15, C-16, C-17), shows depletion towards LREE, quantified by (Pr/Yb)$_{PAAS}$,
(Pr/Sm)$_{PAAS}$, and (Tb/Yb)$_{PAAS}$ < 1 (Table 2), and consistent negative Ce$_{PAAS}$- and positive Gd$_{PAAS}$- and Y$_{PAAS}$-anomalies. These characteristics are consistent with modern seawater (Figure 11). The chert-(dolomite)-hematite BIF samples C-01 and C-14, as well as the hematite mud sample reveal a distinct pattern REE II, which is characterized by stronger LREE depletion and near absence of the Ce$_{PAAS}$-anomaly (Figure 11).

The REE I and II patterns have very similar HREE and Y concentrations and define a mixing array in the (Ce/Ce*)$_{PAAS}$ and (Pr/Yb)$_{PAAS}$ space (Figure 12a), suggesting a genetic relationship amongst both. Base metal concentrations are higher in REE II than in REE I samples (Cu+Pb+Zn > 15 ppm and < 12 ppm, respectively, and Figure 12b for Cu and Pb). This appears also to be the case for U (REE I <0.14 and REE II >0.16: Table 2), albeit the fact that U depends on SiO$_2$, thus is generally higher in chert-rich BIF. An “undisturbed” Mn to Co correlation is indicated for REE I samples, consistent with common Co uptake by Mn-oxides (Figure 12c). However, significant deviation (elevated Co) is shown in REE II samples pointing to more complex Co-hosts.

There are similarities, but also significant differences, between BIF from the “Santa Cruz deposit” and contemporaneous Morro do Urucum deposit (Klein and Ladeira, 2004). Most terrigenous elements Al, Ti (Figure 10a), as well as Zr (Figure 10d), base metals, and Rb (Figure 12d) are higher concentrated in BIF from Morro do Urucum. Nevertheless, the REE patterns mostly resemble those from the Morro do Urucum BIF (compare Figure 11a, b, with Figure 11c), with the exception of the more pronounced Ce-anomalies in REE I BIF. BIF from the Rapitan IF (Halverson et al., 2011; Baldwin et al., 2012) resembles the REE II geochemistry, which the exception of their generally lower Y/Ho ratio (Figure 12e).
6.2. Comparable signature in hematite mud and chert (REE III)

A third distinct REE pattern (REE III), represented by the reworked hematite mud (H-01) and hematite chert (H-03), is characterized by a wavy, but rather flat (shale-like), fractionation pattern, an insignificant Ce$_{\text{PAAS}}$-anomaly, and a weak negative Y$_{\text{PAAS}}$-anomaly. This heterogeneous REE pattern does not resemble the signatures in other BIF types and thus indicate largely contrasting metal sources. Hematite chert is significantly enriched in Zr and Cu (Figure 10d, Figure 12b), whereas Ti, Al, Co and Ni (Figure 10a, Figure 12c, Table 2) are depleted.

The REE-abundance and fractionation pattern of REE III samples are strikingly similar to “hematitic muds and silts” in the Rapitan IF (Figure 11c, Figure 12a) reported by Halverson et al. (2011). Just minor differences are the HREE fractionation pattern and slightly higher Y/Ho in the Rapitan muds and silts (Figure 12e).

Accessory detrital illite, feldspar, and chlorite are present in those rocks (Halverson et al., 2011), and, although not observed in the REE III samples, they may be represented by the abundant hematite-replaced silicates.

6.3. Detritus and possible effects on trace element chemistry

Using REE pattern as proxies of chemical seawater conditions have to be discussed in light of potential diluting effect of detritus. The low (Pr/Yb)$_{\text{PAAS}}$ and high Y/Ho ratios (i.e., super-chondritic, >26.22: Pack et al. (2007)) in REE I and REE II are far from unity (i.e., not shale-like).

The lack of covariance between REE indices and Ti and Al supports that the influence of terrestrial-derived material on the reported REE fractionation indices is negligible (Figure 10b, c). Diagrams of (Pr/Yb)$_{\text{PAAS}}$ and Y/Ho versus Ti (not shown) also lack such covariance. Within the REE I and II types there is no covariance of the Y/Ho anomaly with Zr (Figure 10d) and Al.
Therefore, contribution of detrital sources in REE I and II is considered insignificant with respect to the potential obliteration of a pristine seawater signature. In the absence of terrigenous detritus, important REE hosts are Ca-carbonates and apatite (predominantly LREE and MREE based on similarity of ionic radii: Shannon (1976) and hematite (predominantly HREE with smaller ionic radii). This is supported by a weak covariance of Pr with CaO and P\textsubscript{2}O\textsubscript{5} concentration, whereas no significant covariance of Pr with other elements is detected. Dolomite-apatite content significantly shape LREE fractionation within REE I (higher (Pr/Yb)\textsubscript{PAAS} ratios and lower (Ce/Ce*)\textsubscript{PAAS}) (Figure 10e, Figure 11a) but the key trace element characteristics to differentiate REE I and REE II are independent on dolomite-apatite content. This allows the conclusion that REE I and REE II types BIF recorded seawater signatures, co-precipitated dolomite-apatite have only minor impact on trace element geochemistry and their primary phases were most likely seawater-derived (based on the similarity of REE pattern compared with dolomite-free BIF). The actual genesis of the present carbonate mineralogy, however, is likely secondary diagenetic and will be discussed in section 10.2.

In light of the very low terrigenous detrital components Al and Ti in hematite chert (Figure 10a), its REE pattern is consistent with volcanogenic ash origin (Pearce et al., 2013; Tepe and Bau, 2014) or indicate a certain fluid signature. The hematite-pseudomorphs (Figure 8c) may be an alteration product after volcanogenic Al-free Fe-silicates such as greenalite, stilpnomelane, minnesotaite, or riebeckite. However, the hematite mud sample H-01 lacks high Zr concentrations despite showing an almost equivalent REE III pattern. On the other hand, there is a striking similarity of REE III with those of modern low-temperature (~30 °C) submarine vent fluids reported by Michard et al. (1993), as shown in Figure 11c). Conclusively, the wavy REE
III pattern clearly suggests a component mix, likely including volcanic ash and/or terrigenous detritus, but potentially it indicates low-temperature hydrothermally fertilized seawater. The origin remains contentious and will be discussed in a speculative way.

6.4. Post-sedimentary alteration and possible effects on trace element chemistry

The sample selection was rigorous in terms of avoiding weathering artefact (such as clay and goethite) which may modify geochemical signatures. However, post-depositional, (cryptic) hydrothermal alteration was impossible to avoid and therefore alteration is an alternative explanation for the distinct base metals, Pb, U, and LREE patterns in unweathered BIF. Petrographical evidence for diagenetic alteration do exists: silica veinlets, dolomite recrystallization, hematite replacement, with the most noticeable being hypogene gangue leaching and hematite upgrade by dissolution-podding. Cr (and V) shows a positive covariance with Fe content (Figure 12f), and as these metals are partitioned into the hematite lattice (c.f., Nadoll et al., 2014; Hensler et al., 2015), their covariance is a direct result of podding. All other geochemical signatures in BIF, e.g., Al, Ti, REE fractionation and anomalies, are independent from dissolution-podding, and therefore this alteration is not significant in terms of primary fluid signatures.

Minor LREE mobility in dolomite-chert-hematite BIF, e.g., by carbonate recrystallization, is suggested by the variation of La to Gd abundances amongst dolomite-chert-hematite BIF samples (Figure 11a). However, REE budget in modern and Devonian microbial reef-calcite (Figure 11a) show that carbonates can show minor variation in LREE fractionation compared to the seawater they were
precipitated from. In any case, this LREE variation is insignificant in terms of the general REE pattern.

Hydrothermal alteration of banded chert-hematite BIF (REE II) to podded BIF (REE I) is an alternative explanation for the chemical variance and would involve a depletion of base metals, Pb and U, and an addition of LREE by Ce-HREE-depleted apatite or monazite, causing the negative Ce$_{PAAS}$-anomaly. However, whereas the hydrogenetic Co-Mn correlation appears “pristine” in REE I BIF (Figure 12c), there is deviation from this trend in REE II BIF. This suggests that, if at all, only REE II samples enjoyed limited hydrothermal alteration involving mobility of Co and Mn.

In conclusion, based on the REE patterns in the present sample set, the effects of post-depositional alteration or chemical exchange in whole-rock chemistry are considered as not significant. However, effects at the micro-scale remain contentious and need to be explored in more detail with, for example, stable oxygen isotopes and element mapping.

7. Fe isotopes in hematite

The subset of five samples are petrographically representative for BIF and hematite mud lithologies of the lower carbonaceous (samples C-06 and C-11) and intermediate siliceous (samples C-14, H-14, and H-15) zone and correspond to geochemical samples as shown in Table 1. The Fe isotope data (expressed in per mil units relative to the IRMM-14 standard) show negative δ^{57}Fe values for BIF (Table 3). Values are low in the dolomite-rich hematite BIF (-2.6 and -1.2 ‰), higher in the chert-hematite BIF (-0.7 ‰) and highest in the associated reworked hematite mud (-0.3 and 0.0 ‰). The 1σ range from 0.01 to 0.07 indicates that the data ranges of each group (albeit limited in number) are distinct. This allows a general assessment of a
lithologically controlled iron isotope fractionation, with dolomite-rich BIF being most depleted in $\delta^{57}\text{Fe}$ and hematite mud least. The effect of sedimentological reworking in the hematite mud on the iron isotopic signatures is considered to be minor. For comparison, Fe isotopes in the Rapitan IF record $\delta^{57}\text{Fe}$ values of -0.67 to +1.2 ‰, with an up-stratigraphic increase (Table 3).

8. C isotopes in dolomite

The selected samples are petrographically representative for dolomite-chert-hematite BIF lithologies of the lower carbonaceous zone. In the “Santa Cruz deposits” (this study) and Morro do Urucum deposits (Klein and Ladeira, 2004), carbonates show negative $\delta^{13}\text{C}_\text{CARB}$ values (CARB means carbonate-hosted carbon) relative to seawater, with a total range of -3.4 to -7.0 ‰ PDB (Table 4). At the “Santa Cruz deposit” the range of $\delta^{13}\text{C}_\text{CARB}$ values in selected samples is limited to -3.4 to -4.3 ‰ PDB. In comparison, carbonates in the Rapitan IF recorded less depletion in $^{13}\text{C}_\text{CARB}$ with values between -0.67 to -3.37 ‰ (Klein and Beukes, 1993).

9. Fluid source signatures

9.1. Redox-stratified seawater and influx of continental solutes

The REE I and REE II patterns are mostly consistent with Phanerozoic (modern) seawater (Bau et al., 1995; Alibo and Nozaki, 1999; Bau and Dulski, 1999) as sown in Figure 11a Error! Reference source not found. Seawater-typical positive La$_{\text{PAAS}}$ anomalies are probably masked by the strong Ce$_{\text{PAAS}}$-anomaly (Figure 10f). Seawater has negative Ce$_{\text{PAAS}}$-anomalies due to the large-scale sequestration of Ce$^{4+}$ into hydrogenetic ferromanganese crusts and nodules (Bau, 1999; Kato et al., 2006; Ohmoto et al., 2006). If the Ce$_{\text{PAAS}}$-anomalies in Banda Alta Fm BIF are
related to the seawater redox condition, then the negative Ce-fractionation supports oxidizing conditions (and an abundance of Ce-sinks) in the Neoproterozoic Jacadigo basin at the time of BIF precipitation. On the other hand, the near absence of Ce$_{\text{PAAS}}$-anomalies in REE II BIF indicates the lack of oxygenated water and/or dissolution of Ce$^{4+}$-sinks at the time of BIF.

Modern oceanic water is redox stratified, affecting the Ce budget of seawater. A continuous decrease of Ce concentration occurs with increasing depth within the upper ~500 m. In addition, or alternatively to oxidative scavenging by hydrogenetic Mn-Fe-hydroxides in the upper marine basins, negative seawater Ce-anomaly recorded in BIF may also be an effect of the REE contribution from large amounts of freshwater: Braun et al. (1990) showed that freshwater is commonly Ce-depleted resulting from weathering-related Ce-enrichment in saprolites and Alexander et al. (2008) show evidence for a significant contribution of continental freshwater solutes to the Nd-isotopic signature in shallow Paleoproterozoic BIF. (Sholkovitz and Schneider, 1991; Alibo and Nozaki, 1999). Ce concentrations remain low but largely unchanged also in deeper zones (500 - 3000 m) of the ocean (Alibo and Nozaki, 1999). Contrastingly, in marine sub-basins where hydrological equilibrium with the oceans is incomplete, redoxclines are present, dividing upper oxic and lower anoxic zones (Sholkovitz et al., 1992; Bau et al., 1997). Within and just below the redoxcline, partial Ce$^{4+}$ to Ce$^{3+}$ reduction occurs, increasing the relative solubility, and thus the Ce concentration in water increases by dissolution of Mn-Fe-hydroxides (Bau et al., 1997). In deep anoxic zones, progressed dissolution of hydroxide particles fractionates REE and Y by selective dissolution of LREE over HREE (increase of Pr/Yb)$_{\text{PAAS}}$ and Ho over Y (decrease of Y/Ho), ultimately generating a near-flat dissolved REE pattern with a vanished Ce-anomaly and (no or negative) Y-anomaly (Bau et al., 1997). Those REE trends across three redox zones in relation to a redoxcline have been proposed for
Proterozoic deep marine iron formations associated with partially oxidized seawater (Planavsky et al., 2010). In the present data set, those three zones are represented by the sample set: (1) dolomite-rich BIF and some chert-rich BIF (REE I) representing the oxidized top part above the redoxcline, likely influenced by abundant freshwater; (2) chert-rich BIF and chemically precipitated hematite mud (REE II) from below (but near to) the redoxcline with lower Ce$_{PAAS}$-anomaly; and (3) hematite chert and hematite mud (REE III), albeit with its contentious detrital and/or volcanic ash contribution, approximating the anoxic “deep” seawater zone characterized by minimal Ce-anomaly and negative Y-anomaly, and maybe influenced by low-temperature hydrothermal fluids (c.f., Planavsky et al., 2010).

In contrast to the “Santa Cruz deposit”, Ce$_{PAAS}$-anomalies in BIF at Morro do Urucum are far less pronounced (Klein and Ladeira, 2004), and in the Rapitan IF even negligible (Halverson et al., 2011; Baldwin et al., 2012), as shown in Figure 11d. In summary, the sample set from the “Santa Cruz deposit” recorded temporarily changing redox conditions in the largely isolated Jacadigo basin, which may be related to fluctuation of the seawater level and associated redoxcline, or variation in fluid-mixing (as discussed in the following section).

9.2. Fertilization by crustal alteration: hydrothermalism or benthic pore water flux?

Based on the trace element variations and total values it is suggested that REE II chert-hematite BIF samples recorded a stronger signature of submarine crustal alteration than REE I chert- and dolomite-hematite BIF samples. In cases of pure BIF, an explanation for variations in base metal concentrations are variable fertilization of seawater with metals derived from submarine hydrothermal fluids, benthic pore water flux, or continental solutes. Owing to the lack of Ce$_{PAAS}$-anomaly in REE II, fertilization under reduced conditions water is a likely scenario for REE II
type BIF and precludes oxidized continental solutes derived from weathering of the continental hinterland. Fertilization of seawater is also indicated by Y/Ho ratios (Figure 12e), which range between seawater-like (>40) and chondrite-like signatures (27 - 35) and thus support metal input to seawater from external fluids. Geochemical modelling by Le Hir et al. (2008) shows an up to four times greater rate of alteration reactions in a CO₂-charged snowball earth ocean, therefore crustal alteration (either by pore water or hydrothermal fluids) must have been significant.

Elevated Zn/Co ratios are suitable tracers of such crustal alteration, as Co is largely derived from pure seawater, whereas Zn is sourced from altered rocks (Toth, 1980). In the Banda Alta Fm BIF the Zn/Co ratios range between 1.7 and 6 with higher values recorded in chert-hematite BIF (Figure 12e). These ratios are comparable to those recorded in BIF of the Rapitan IF (Halverson et al., 2011) and consistent with significant metal input from altered rocks. Much higher Zn/Co ratios are recorded in hematite chert and mud (18 and 18.8), which contrast those values from hematitic mud and silt of the Rapitan IF. The altered crust may be oceanic crust (low-LREE, Cu and locally Co in REE II rocks) or granitic basement and shales (Pb, Zn, U in REE II and REE III rocks). If detritus and ash is negligible, then the geochemical signatures in hematite chert and hematite mud are consistent with highest contribution from felsic altered rocks.

What is the cause of this submarine crustal alteration: hydrothermal activity or widespread scavenging of seafloor sediments by benthic pore waters? The Fe-isotopic composition has the potential to narrow down the sources of iron and alteration fluids: According to Johnson et al. (2003) there are three factors defining the Fe isotope fractionation in BIF: (1) the compositions of the fluids from which minerals were precipitated, (2) the effects of metabolic processing of Fe by bacteria, and (3) mineral-specific equilibrium fractionation. The latter factor can be considered as insignificant, since competing phases are just iron-free SiO₂ and carbonates with
only a few percent Fe. The fluid Fe-isotopic composition is unknown, but should be in all BIF of the sequence that same, no matter if dolomite or chert-rich, because the Fe source (i.e., altered Fe-rich rocks in the deeper basin) would not have changed significantly. The δ^{57}Fe isotope in REE II type chert-hematite BIF (-0.71 ‰) and REE III type hematite mud (-0.25 and -0.04 ‰) are consistent with MOR hydrothermal fluids (-0.9 to -0.45: Johnson et al., 2003). This supports the presence of hydrothermal fluids as a medium of seawater fertilization. A slight positive shift in δ^{57}Fe associated with the oxidation of Fe (Johnson et al., 2003) should have affected all BIF similarly and point to a primarily slightly more Fe isotope depleted source. The strong Fe isotope fractionation in REE I type carbonate-rich BIF to low δ^{57}Fe (down to 2.6 ‰) does not match any known iron reservoir (Beard and Johnson, 1999; Johnson et al., 2003) and microbial activity is likely a major factor (see section 10.2).

The hydrothermal fertilization model is largely accepted for Archean and Paleoproterozoic BIF, and is based on the common REE fractionation patterns exhibiting positive Eu$_{PAAS}$-anomalies, which are related to high-temperature hydrothermal solutions (>200 °C) in the REE source (Dymek and Klein, 1988; Danielson et al., 1992; Bau and Möller, 1993; Bau and Dulski, 1996; Bau and Dulski, 1999; Ohmoto et al., 2006; Bolhar and Van Kranendonk, 2007; Planavsky et al., 2010). The Neoproterozoic BIF in the “Santa Cruz deposit” shows REE patterns different to Archean and Paleoproterozoic BIF, particularly the absence of a positive Eu anomaly (Figure 11). This points to the absence of high-temperature hydrothermal alteration (Bau and Dulski, 1999), but does not preclude low-temperature hydrothermal fluids (<150 °C), which do not always show Eu enrichment, as shown in Figure 11c (Michard et al., 1993; Alexander et al., 2008). The influence of fertilization of the
Neoproterozoic seawater with high-temperature fluids has previously been inferred for the Jacadigo BIF (Graf Jr et al., 1994), where the lack of Eu anomaly was attributed to the fluid interacting with rocks that display a negative Eu-anomaly, such as the granitoids in the basement. Basta et al. (2011) concluded for the Wadi Karim BIF in Egypt, which also lack Eu_{PAAS}-anomalies, that low-temperature hydrothermal fluids interacting with mafic rocks fertilized Neoproterozoic seawater. Although the Jacadigo basin lacks evidence of oceanic crust and exhalative hydrothermal processes, the active graben tectonics (D_{x-1}) in the Corumbá Graben may have introduced hydrothermal fluids from deep seated sources (Dardenne, 1998; Walde and Hagemann, 2007). If fluid flow rates were intense enough, possibly accommodated by glacioeustatic pressurization and depressurization (Kump and Seyfried, 2005), these processes may effectively contribute to the metal fertilization. Laterally widespread seafloor sediment alteration by pore fluids is an alternative process that may have fertilized the seawater with metals that were deposited as Fe- and Mn-rich rocks in the Banda Alta Fm. Distal source regions in deeper parts of the basin are envisaged. Pufahl and Hiatt (2012) proposed that hypothetical pyrite-rich back shales in some anoxic deep water sections may have been a potential reservoir for metals including Fe, Mn, Si, and also base metals, Pb, and U. In reduced seawater that was undersaturated in S such hydrothermal reactions could have taken place. Sulphur-undersaturated Neoproterozoic seawater with consequential low sulphate-reducing bacteria activity, has been discussed as a result of the lack of typically sulphate-rich freshwater supply during glaciation (Hoffman, 2009; Swanson-Hysell et al., 2010). In addition to the submarine alteration process(es), glacial erosion of long-lived and thick regolith may have enhanced iron accumulation in the ocean (Swanson-Hysell et al., 2010). Sediments delivered by icebergs are a significant source of iron (as Fe-hydroxide nanoparticles).
to the open oceans (Raiswell et al., 2006). However fertilization by ice-delivered metals is not
important here, for two reasons: (1) metal concentration are not higher in REE I type BIF, which
should be the case as these BIF are strongest influence by ice and freshwater, and (2) considering
illite, as a major Rb host, as being a main component in eroded regolith, the relatively low Rb
concentration in BIF of the “Santa Cruz deposit” (Figure 12d) does not support such regolith
provenance. However, Rb, as well as Al, Ti, Zr, that are enriched in regolith concentrations are
much higher at Morro do Urucum (Klein and Ladeira, 2004), suggesting a variable flux of
continental derived detritus across the Jacadigo basin. Also, Baldwin et al. (2012) discussed
icebergs as a source for metals in the Rapitan IF, which is consistent with higher Rb/Sr values.

10. BIF facies in response to tectonics, climate, transgression, and metal sources

The above discussed multi-source signatures of the rocks can be correlated with the stratigraphic
sequence of the Banda Alta Fm to determine a chemostratigraphy and the sedimentary setting of
the basin. This setting can be discussed in terms of the prevailing tectonics, climate, relative
redoxcline variation, and fluid sources. In Figure 13a the discussed chemical proxies to a semi-
quantitative, albeit spatially limited, chemostratigraphic model are synthesized.

10.1. A glaciomarine depositional environment

The deposition of the BIF in the Jacadigo Group took place in a glaciomarine environment
(Urban et al., 1992). This postulation has been regionally supported by BIF that include
dropstones and lonestones and the abundant diamictites in the sequence. The negative δ^{13}C
values of carbonates in BIF ranging from -3.4 to -7.0 ‰ (also recorded at Morro do Urucum:
Klein and Ladeira, 2004), are consistent with signatures from global syn-glacial deposits (Kaufman and Knoll, 1995). Negative $\delta^{13}C_{\text{CARB}}$ excursions in stratigraphic carbonates are recorded closely below, within, and closely above Marinoan and Ediacarian glaciogenic sedimentary successions (Kaufman and Knoll, 1995; Swanson-Hysell et al., 2010). According to Kaufman et al. (1991) several possible mechanisms may have contributed to the recorded ^{13}C depletion, of which (1) the breakdown of marine stratification (or upwelling) and mixing of ^{13}C-depleted deep water into the surface ocean, and (2) the erosion of organic-rich rocks exposed during low sea-level (i.e., syn-glaciation) stands are most likely deeper marine water as the predominant source of light C agrees with the proposed Fe source area within the Jacadigo basin. Organic-rich black shales (as metal sources) in the deep parts of the basin have been postulated by Pufahl and Hiatt (2012). Microbial activity in the carbonate precipitation will be discussed in the following section. It is possibly that several processes contributed to the ^{13}C depleted isotope signatures in the glaciogenic successions (Kaufman and Knoll, 1995). Without further, more detailed investigation, the actual cause for the present ^{13}C depleted signatures in the Banda Alta Fm carbonate-rich BIF remains speculative, and the discrepancy in $^{13}C_{\text{CARB}}$ between the two putatively coeval glaciogenic sequences, Rapitan IF and Banda Alta Fm BIF remarkable, but unexplained.

A glaciomarine precipitation model in response to a redoxcline is based on the present investigation, and largely compatible with the Urban et al. (1992) model (Figure 13b): During glaciation phases, glaciers and sea ice closed-up the basin preventing atmospheric O_2 ventilation. Under such conditions a redoxcline built up, and metals deriving from submarine rock alteration remained largely in solution throughout the basin. A near-complete covering with ice during
peak glaciations and a minimized hydrological exchange with the ocean requires the basin being relatively small, like a gulf, and silled (i.e. isolated only in the lower part by graben), as envisaged for the Rapitan IF (Baldwin et al., 2012). In times of glacial retraction, oxidizing conditions in the gulf led to the precipitation of hydroxides rich in Fe$^{3+}$ or Si$^{4+}$ and/or calcium carbonate to form BIF. Carbonate or chert precipitation in BIF was likely in response to prevailing water depth. At the same time, melting of sea ice introduced previously locked-in drop stones and thin clastic layers.

10.2. **Hematite and dolomitic carbonate precipitation in response to microbial mediation?**

Based on the clear stratigraphic setting (lower and upper dolomite-rich BIF) and the low-13C signature of dolomite, it is concluded that carbonates in the Banda Alta Fm BIF derived from seawater precipitation, although most of the carbonate is present as recrystallized Fe-Mn-dolomite ± Fe-Mn-calcite. The Fe-Mn enrichment of the carbonates result from the metal-endowed fluid-rock system in which carbonate was precipitated or recrystallized.

The degree of CaCO$_3$ and Ca(Mg,Fe,Mn)(CO$_3$)$_2$ saturation increases with warming, which is the reason why Phanerozoic and modern shallow-water carbonates exist mainly within 35° of the paleoequator (Kiessling, 2001; Kiessling et al., 2003, and references therein). Therefore, the warmer interglacial periods are the likely setting for carbonate precipitation. Supersaturation of dissolved CO$_2$ or CO$_3^-$ is required to chemically deposit carbonate (Dupraz et al., 2009, and references therein). There is evidence for higher CO$_2$ partial pressure in the Neoproterozoic atmosphere compared to recent times (Bao et al., 2008). However, it is questionable if this CO$_2$ concentration had an impact on the restricted carbonate precipitation in the BIF sequences. Therefore, on top of the climatically controlled, elevated CO$_2$ level, crustal alteration by low-
temperature hydrothermal fluids or pore waters likely fertilized seawater with CH$_4$ or CO$_2$.

Similar provenance for CO$_2$ has been concluded for Archean-Early Proterozoic carbonate-facies BIF in the Quadrilatéro Ferrífero in Brazil, in which dolomite precipitated at shallow depth from seawater that was fertilized with hydrothermal fluids enriched in CO$_2$ and with a high Mg/Ca ratio (Morgan et al., 2013). A primary precipitation of dolomite remains controversial. One largely accepted model is that dolomite formed by secondary replacement of meta-stable calcium carbonates (aragonite and high-Mg calcite) facilitated by the circulation of (typically Mg-rich) seawater during diagenesis (McKenzie and Vasconcelos, 2009, and references therein).

Another (or further) probable process facilitating carbonate precipitation (aragonite, calcite or dolomite) was bacterial activity. Petrographic evidence for microbial activity is the abundance of spheroids. Spheroids are commonly observed in very-low metamorphic grade BIF of various ages (c.f., Krapež et al., 2003; Rasmussen et al., 2013), and biomineralized carbonate with spheroid morphology has been found in diverse modern environments and in geological dolomite samples (McKenzie and Vasconcelos, 2009, and references therein). Mg-calcite microbialites from modern and Devonian reefs (Webb and Kamber, 2000; Nothdurft et al., 2004) have REE pattern characterized by a shallower LREE fractionation trend compared to ambient seawater, therefore most similar to the carbonate-rich BIF (Figure 11a).

Calcium carbonate spheroids are discussed as biogenic features linked to cyanobacterial activity involving photosynthetic uptake of dissolved CO$_2$ or HCO$_3^-$ facilitating CaCO$_3$ precipitation (c.f., Verrecchia et al., 1995). Such photosynthetic microbial activity and carbonate precipitation is envisaged in interglacial periods by the largely absence of sea ice. Biomediated dolomite precipitation has been shown to occur in various, hypersaline marine settings: Wright and Wacey (2005) proposed dolomite formation through bacterial sulphate reduction. However, this process
requiring a sulphate-rich, reduced water-sediment interface was most likely not the key process in the oxidized Banda Alta Fm BIF showing negative Ce\textsubscript{PAAS}-anomalies and Fe3+ in hematite. Also, Neoproterozoic seawater was largely sulphur-undersaturated (Hoffman, 2009; Swanson-Hysell et al., 2010), although during interglacial periods seawater may have been temporarily refertilized with sulphate from freshwater runoffs. The more likely process is microbial dolomite precipitation by aerobic respiration as shown by Sánchez-Román et al. (2009) in the younger geological record and by experiments.

Fractionation to negative hematite δ^{57}Fe values in the carbonate-rich facies BIF supports microbial activity also being active during Fe-hydroxide precipitation. Beard and Johnson (1999) proposed that bacterial metabolism played a crucial role for Fe isotope fractionation during precipitation of marine hydrogenic Fe-Mn nodules and Fe-rich layers in BIF. As the overall source of Fe in all BIF should be the same across the Banda Alta Fm, the dominant process leading to a variation in Fe isotopic composition between dolomite- or chert-rich BIF must be a syn-sedimentary or early diagenetic. In light of the above discussed carbonate genesis, this fractionating process is most likely microbial activity accumulating light 57Fe in iron oxides. Consequently, microbial activity was reduced during precipitation of carbonate-free BIF, mud, and chert; albeit it was still active, mediating Fe oxidation and causing the observed minor 57Fe fractionation.

A variability of microbial activity during BIF precipitation in response to temperature changes has been suggested by Posth et al. (2008), who determined experimentally a maximum of bio-mediated Fe-oxidation (and thus Fe-hydroxide precipitation) at 20-25 °C. Conclusively, primary carbonate (dolomite or metastable Mg-Calcite or aragonite) and associated hematite in the Banda Alta Fm BIF was mainly a product of marine biomineralization by aerobic respiration of
microbial colonies in warm interglacial, shallow, saline water environment. In the colder and
anoxic chert-BIF facies, biomineralization of Fe-hydroxides was also active but reduced.

10.3. **A transgression-regression cycle in response to glacial isostatic adjustment**

The up-stratigraphy transition in the Banda Alta Fm from a lower carbonate-rich facies to an
intermediate jaspilitic BIF facies, via a transitional zone of ~50 metres, in which both facies are
alternating, corresponds with simultaneous increase in δ^{57}Fe value, Zn/Co ratio, Ce$_{\text{PAAS}}$-
anomaly, and decrease of (Pr/Sm)$_{\text{PAAS}}$ ratio (Figure 13a, b). These geochemical indicators reflect
an increase of metal contribution from submarine rock alteration (base metals), or in turn the lack
of continental solutes (Ce), and the decrease of microbial activity in the basin below the
redoxcline (δ^{57}Fe). Similarly, a covariance of Zn/Co and positive δ^{57}Fe fractionation (and Y/Ho),
all coupled to an increase in water depth, have been observed in the Rapitan IF (Halverson et al.,
2011). The δ^{57}Fe trend in the Rapitan IF is interpreted as an isotopic gradient in the marine water
column, in which isotopically heavy Fe is enriched in the lower parts of a chemocline, as a result
of upward Fe-diffusion (Halverson et al., 2011). In the Banda Alta Fm BIF, however, heavy Fe is
absent and isotope fractionation to light Fe is rather controlled by microbial activity.

The proposed up-sequence facies change is compatible with an overall transgressive scenario,
initiated with the facies transition from the Urucum Fm (more fluvial) to Córrego das Pedras Fm
(more shallow marine with abundant Mn-horizons). In the upper Banda Alta Fm, carbonate-rich
BIF indicate the reversed process, i.e., regression of the ocean water. Figure 13c correlates all
established climatic, chemical, petrographic parameters to a consistent time-resolved scheme.
This scenario is largely compatible with the three-stage basin evolution of the (gulf-like)
Jacadigo basin within a half graben proposed by Freitas et al. (2011): During the early rift climax
system tract, the Urucum Fm, characterized by bedload-dominated river, lacustrine and fan-delta environments, was deposited (Freitas et al., 2011). During the mid-rift system tract, the shallow marine Córrego das Pedras Fm and shallow to deeper marine Banda Alta Fm BIF-diamictite facies were the main elements of the basin infill. Based on geochemistry supporting strongest metal fertilization and least oxidation, hematite chert and mud may represent the deepest marine setting, and thus marked, together with the associated middle diamictite, the peak of transgression. After deposition of the upper carbonate-BIF during the regressive stage, the late (post-rift) systems tract caused the extensive carbonate deposits of the Corumbá Group. The stratigraphic column in the Rapitan IF indicates a similar depositional environment related to a relative rise in sea level, and is interpreted as the result of glacial isostatic adjustment during the advance of ice sheets (Klein and Beukes, 1993). If the transgression of the Jacadigo basin was dominated by glacial isostatic adjustment (Lambeck et al., 2014, and references therein), and not (only) by global eustatic sea level rise or regional graben tectonics, then the chert-rich BIF facies marking the transgressive peak is consistent with the peak of the ice age.

10.4. Diamictites as a gravitation flow of a reworked till

A direct glaciogenic origin of the diamictites has previously been invoked (Dorr II, 1945; Urban et al., 1992), based on similarities to till sediments. However, the proposed location in the deeper basin of the middle diamictite causes problems related to its genesis. A till pushed forward into the basin during glacial advances is expected only in a near-shore environment, and therefore an unlikely option considering the established deeper basin setting of contemporaneous hematite chert and mud. An alternative scenario compatible with a distal position is the settling of detritus liberated from retracting sea ice. However, this rather slow and continuous scenario is
incompatible with the high energy mass flow deduced by the reworked hematite mud breccias in
the diamictite footwall. A third possibility is that diamictites represent gravitational flows on the
continental margin, possibly triggered by tectonic processes. Such scenario has been proposed
for diamictites in the Jacadigo Group (Freitas et al., 2011), and also for similar Neoproterozoic
units, e.g., in Namibia (Eyles and Januszczak, 2007). Here we propose the combination of both
processes, glaciogenic and gravitational, to be responsible for the middle diamictite
sedimentation. Accordingly, diamictites represent a reworked till that was initially pushed by
advancing glaciers to a position at the basin slope during the cold peak glacial phase, before it
collapsed under its own weight and the glacier’s load (or triggered by an earthquake, c.f., Freitas
et al., 2011) and moved as a gravitational flow into deeper parts of the basin (Figure 13).
Interstitial layers of hematite chert indicate that this process took place several times, with
periods of quiescence allowing for chemical chert deposition. Considering a rapid sedimentation
of the diamictite flows, the ferruginized and siliceous cement must have been resulted from the
abundance of fine reworked iron and chert particles mixed into the diamict slurry.

10.5. **The geotectonic setting of the Jacadigo basin - a Brasiliano back arc?**

The opening of the Corumbá graben system (c.f., Trompette et al., 1998) in which the Jacadigo
Group was deposited, may have been synchronous with deformation during the early Brasiliano
collision at ~590 Ma (Trompette et al., 1998 and references therein). According to Freitas et al.
(2011), a recorded high-rate subsidence was related to the initiation of the border fault of the
(half-) graben system, which implies that the Corumbá graben system was active at least during
deposition of the Córrego das Pedras Fm. This is supported by the regionally variable
stratigraphic thickness (Trompette et al., 1998) and number of Mn-horizons. In the “Santa Cruz
the Córrego das Pedras Fm is only a few decametres metres thick, compared with the Morro do Urucum, where the Córrego das Pedras Fm is ~90 metres thick (Dorr II, 1945). The entire Jacadigo Group was deposited on the continental shelf of a rifted basin (Walde and Hagemann, 2007), and a likely setting would be a back-arc that was opened during collision related to the Brasiliano orogeny. The discussed low-temperature hydrothermal activity interacting with the basement can be envisaged in a back-arc basin, in which the crust was significantly thinned (Corumbá Graben) and even some volcanic activity may have taken place, as speculated from volcanic ash silicates (?) and metal enrichment in the hematite chert. A continental failed rift basin without production of oceanic crust is envisaged. Similar models involving rifting and contemporaneous exhalation of ore bearing fluids into the basins have been proposed for a series of Neoproterozoic BIF, mainly based on associated mafic rocks in the sequences (i.e. Wadi Karim, Tatonduk, Chestnut Hill, Damara) and/or occur in rifted basins (Chuos, Yerbal, Oraparinna, Holowilena, Braemar, Rapitan BIFs) (Cox et al., 2013, and references therein).

In terms of lateral continuity at the regional scale, it is interesting that BIF in the Morro do Urucum deposit (Klein and Ladeira, 2004) show, at most, weak negative Ce_Paas-anomalies (Figure 11d, Figure 12a). Taking into account that Al, Ti, Zr, and Rb and most base metals concentrations in the Morro do Urucum deposit are much higher (Klein and Ladeira, 2004), and carbonate content in unweathered BIF lower (pers. comm. Rio Tinto staff) than in the “Santa Cruz deposit”, this all points to a strong variability of detrital source (and water redox state by glaciogenic water input?) across the Jacadigo basin. The Morro do Urucum deposit was probably located in the less oxygenated, centre of the basin richer in alteration-derived metal, whereas the “Santa Cruz deposit” was located more towards the shore,
influenced by oxidized, glaciogenic water in the lower and upper (carbonate-rich) stratigraphic zones.

11. Conclusions

The present study of the Urucum-type Santa Cruz hematite deposit, successfully contributes to the ongoing discussion of the genesis of Neoproterozoic BIF. A revised depositional model is presented, which supports the sedimentation of complex BIF facies, linked to a tectonically and eustatically controlled transgression-regression cycle under changing climatic and fluid source conditions.

Specific geochemical indicators (base metal concentration, Zn/Co ratio, LREE/HREE fractionation, Ce_{PAAS}-anomaly, Y/Ho ratio) in the stratigraphic transition of dolomite-rich to chert-rich BIF to clastic diamictite facies chemical lithologies allows to determine the relative influence of four sources: (1) redox-stratified seawater, (2) base metal-rich fertilizing fluids (low-temperature vent or pore water) derived from altered mafic, felsic, or shale crust, (3) oxidized continental solutes, and (4) terrigenous detritus in silt-layers in BIF and in diamictites. Microbial activity facilitating carbonate precipitation in carbonate-rich BIF in shallow water above a redoxcline is supported by spheroids in carbonate and strongly negative δ⁵⁷Fe values in hematite. Whether low-temperature hydrothermal (vent) fluids or (benthic) pore water flux played a dominant role in metal fertilization, remains contentious. The local and regional geological setting suggests that the Jacadigo Group was deposited during active (half-) graben tectonics probably in a continental failed rift back-arc. If this setting is related during initial collisions associated with the Brasiliano orogeny (~590 Ma), then this suggests that the Jacadigo
The Jacadigo Group is associated with the suite of Ediacarian glaciations. However, final conclusions on the age of the Jacadigo Group cannot be made.

Figures and Tables

Figure 1: (a) Geological map of the Brasiliano Paraguay fold belt and the Chiquitos-Tucavaca aulacogen which cross-cuts the eastern part of the Amazon craton near the Brazil-Bolivia boundary (according to Schobbenhaus et al., 1981; Litherland et al., 1989; de Alvarenga and Trompette, 1994; Trompette et al., 1998). The contact between the two geological provinces is generally characterized by thrusting of metasediments onto the folded cratonic sequences.

Figure 2: (a) Geological map and (b) cross section of the Corumbá graben system (modified after Walde, 1988; Trompette et al., 1998). Names of the main hills or morros (M): 1. M. do Jacadigo (Mutum in Bolivia); 2. M. da Tromba dos Macacos; 3. M. do Urucum with the underground manganese mine of the Urucum Mineracão; 4. M. Santa Cruz with the São Domingos underground manganese mine (presently inactive), and open-pit iron mine in the northern part; 5. M. Grande with the presently inactive Figueirinha manganese underground mine; 6. M. do Rabichão with the presently inactive Santana manganese underground mine; 7. M. do Zanetti; 8. M. Pelada; 9. M. d'Aguassu; 10. M. do Sajutá.

Figure 3: Generalized stratigraphical profile of the “Santa Cruz deposit”, based on logging and mapping of the authors and company geologists. Stratigraphic nomenclature based on Dorr II (1945).

Figure 4: Cross-section across the “Santa Cruz deposit” (a) NW-SE cross-section; (b) SSW-NNE cross-section. See Figure 5 for map with cross section location.
Figure 5: The “Santa Cruz deposit”; (a) simplified geological map with drill hole locations; (b) four drill hole logs with grab sample locations, including outcrop samples from above drill hole 24-36.

Figure 6: Petrography of dolomite-chert-hematite BIF. (a) sample C-06 with intra-band nodular texture; (b) half core sample showing inter-band pseudonodular dolomite-chert texture; (c) photomicrograph of folded dolomite and chert microbands and hematite-altered spheroids; (d) photomicrograph of a dolomite mesoband showing dolomite-cryptocrystalline hematite nodules in recrystallized dolomite matrix; rims of chert-dolomite-calcite at the contacts between nodules and matrix; cryptocrystalline hematite-rich nodule apex; (e) SEM-backscattered micrograph of a dolomite-chert nodule with cryptocrystalline hematite dust bordered by microcrystalline hematite; (f) photomicrograph of sample C-04 showing two distinct textures in a hematite mesoband: laminae rich in cellular and lepidoblastic microplaty hematite. H = hematite, crxH = cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = crossed nicols.

Figure 7: Petrography of chert-hematite BIF. (a) banded texture in sample C-14; (b) half core view showing typical dissolution-podding in chert-hematite BIF; (c) photomicrograph of cryptocrystalline hematite-impregnated chert matrix; shown are chert-clast and quartz-veins, both devoid of cryptocrystalline hematite; (d) photomicrograph of sample C-14 showing a cellular hematite mesobands, partly thinned by dissolution-podding; e) photomicrograph of sample C-01 showing fused microplaty hematite texture and potentially clastic remnants; (f) photomicrograph of a gangue layer rich in spheroid and blue stained dolomite. H = hematite, crxH = cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = crossed nicols.
Figure 8: Petrography of hematite chert and hematite mud; (a) Sample H-03 with red, jaspilitic chert layers and thin hematite laminae; (b) photomicrograph of H-03 with chert layer and hematite lamina; note the hematite-clast in chert; (c) photomicrograph of H-03 showing secondary hematite after fibrous silicates may indicate volcanic ash; (d) photomicrograph of H-03 showing a granular hematite lamina, probably of thixotropic nature; (e) Hematite mud sample H-01 with compact, laminated hematite texture and local chart lenses (f) photomicrograph of H-01 showing irregular fused hematite grains, interpreted as reworked sedimentary texture; (g) photomicrograph of H-01 showing cellular hematite texture; (h) photomicrograph of C-18 showing granoblastic hematite textures (after chemical sedimentation?) with variable grain sizes.

H = hematite, crxH = cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = crossed nicols.

Figure 9: Major element geochemistry of grab samples shown as binary diagrams of major oxides and LOI versus Fe grade. Fields are based on the Vetria assay database (unpublished data, Vetria Mineração). (a) SiO$_2$ versus Fe shows the unimodal distribution of chert-hematite BIF, inclusive leached BIF, and a clustered distribution of dolomite-chert BIF, which are still relatively rich in SiO$_2$; (b, c) CaO and MgO are amongst the major constituents only in dolomite-chert-hematite BIF; (d) Al$_2$O$_3$ shows the minor contribution of terrigenous material in all samples. The high-Al range in the Vetria database results from inclusion of minor siliciclastic bands into assay samples; (e) P$_2$O$_5$ is significantly higher in dolomite-rich BIF resulting in the abundance of apatite grains.

Figure 10: Geochemical tests for the influence of detrital (Al, Ti) and carbonate (Ca) components on trace element patterns, especially the Ce-anomaly. (a) Al$_2$O$_3$ versus TiO$_2$ indicates the general low concentration of terrigenous material in the samples, which is similar to worldwide BIF and
Rapitan BIF (Baldwin et al., 2012); see the high concentrations in BIF from the Urucum deposit (Klein and Ladeira, 2004). The worldwide (ww) BIF field is based on a selection of representative BIF across the globe: Temagami BIF, Canada (Bau and Alexander, 2009); Kuruman Iron Formation, South Africa (Gutzmer et al., 2008); Sandur schist belt BIF (Gutzmer et al., 2008), Caué Fm, Quadrilatéro Ferrifero, Brazil (Spier et al., 2007); Carajas Serra Norte deposits (Figueiredo e Silva et al., 2008); Koolyanobbing and Windarling deposits, Yilgarn Craton (Angerer et al., 2012; Angerer et al., 2013); Pic de Fon deposit, Guinea (Cope et al., 2008), Brockman and Marra Mamba Iron Formations, Western Australia, including Tom Price, Mt. Whaleback, Eastern Ridge, and Mesa Gap deposits (unpublished data from the first author).

(b, c) Al_2O_3 and TiO_2 versus $(\text{Ce/Ca*})_{\text{PAAS}}$ show no significant influence (no covariability) of detrital components on Ce-anomaly; (d) Y/Ho versus Zr indicates a slight covariance across the sample set, but not with the distinct REE groups. See high Zr in hematite chert sample H-03; (e) CaO versus $(\text{Ce/Ce*})_{\text{PAAS}}$ shows that the specific Ce_{PAAS}-anomalies of REE I- and II-type BIF are unrelated to carbonate content (f) Binary diagram of $(\text{Pr/Pr*})_{\text{PAAS}}$ versus $(\text{Ce/Ce*})_{\text{PAAS}}$ indicates the ubiquitous presence of a true negative Ce-anomaly in all samples, and the absence of a true La anomaly (cf. Bau and Dulski, 1996; Planavsky et al., 2010).

Figure 11: REE multi-element diagrams. (a) REE I type dolomite-chert-hematite and chert-hematite BIF in comparison with modern seawater (Alibo and Nozaki, 1999), modern calcitic microbialites (Webb and Kamber, 2000) and Devonian microbialites (Nothdurft et al., 2004); (b) REE II type chert-(dolomite)-hematite and chemical hematite mud; (c) REE III type hematite chert and reworked hematite mud in comparison with Archean BIF (IF-G: Bolhar et al., 2004), high-temperature vent fluids (Bau and Dulski, 1999) and low-temperature vents fluids (Michard et al., 1993). (d) calculated mean values of carbonate-bearing and carbonate-poor BIF from
published datasets: Morro do Urucum (Klein and Ladeira, 2004) and Rapitan IF (Halverson et al., 2011; Baldwin et al., 2012). To ease comparison, all normalized fluid data are multiplied to fit the present scale.

Figure 12: Binary diagrams for selected major and trace elements (see Figure 10 caption for references to fields, additional data for the Rapitan IF (BIF, hematitic mud and hematitic silt) are from Halverson et al. (2011); (a) \((\text{Pr}/\text{Yb})_{\text{PAAS}}\) versus \((\text{Ce}/\text{Ce}^*)_{\text{PAAS}}\) discriminates the REE pattern I, II, III, but also shows the transition between REE I and REE II. A negative \(\text{Ce}_{\text{PAAS}}\) anomaly is well developed only in REE I type BIF from the “Santa Cruz deposit”, (the Urucum dataset of Klein and Ladeira (2004) lacks Pr, hence \((\text{La}/\text{Yb})_{\text{PAAS}}\) is shown and Ce-anomaly calculated with Nd); (b) discrimination of REE I type BIF from REE II and III types based on low Cu and Pb abundances is a result of the dilution with metal-depleted continental solutes; (c) a correlation of MnO and Co results from hydrogenic co-precipitation, whereas disturbance of this trend derives from variable hydrothermal Co contribution; (d) a very low Rb/Sr ratio (based on low Rb) in samples of the “Santa Cruz deposit”, compared with other BIF, suggests low amount of weathering-derived detritus or solutes from altered continental crust; (e) The combined plot of Zn/Co and Y/Ho discriminates various metal and REE sources. Elevated Zn/Co is a proxy for Zn input by crustal alteration, and the range of Y/Ho shows the mixing of various sources into seawater (continental solutes, crustal alteration, and anoxic deep seawater); (f) Cr covaries with Fe, both being distributed in hematite and passively enriched by dissolution-podding.
Figure 13: (a) Chemostratigraphic variations in the BIF facies in the Jacadigo basin as recorded in the “Santa Cruz deposit”. See text for discussion. (b) Chemical cycling in the Jacadigo basin: Metals for BIF precipitation derived from upwelling low-temperature hydrothermal solutes or pore water. Formations of the two main BIF facies, carbonate- and chert-rich, were related to the relative position of the seafloor to the redoxcline (transition from oxic to anoxic water), which fluctuated due to transgression juxtaposed with glaciogenic processes. Carbonate and hematite precipitation in the shallow zone above the redoxcline was facilitated by basin-wide CO$_2$ abundance and bacteria mediation. Chert-rich BIF with stronger hydrothermal signature lacks the contribution of diluting and oxygenated shallow water from melting glaciers, and bacteria activity was still active but reduced. Hematite chert and reworked mud, preceding and following the middle diamictite flow, may represent the deepest zone showing strongest input of metals derived from submarine alteration. (c) simplified variations of basin parameters: The time-dependent variation of the depth of the redoxcline and submarine crustal alteration versus continental solute influxes result from the juxtaposition of the overall marine transgression and shorter-term glacial advance-regression cycles.

Table 1: Sample set (BIF, hematite chert, hematite mud) from the “Santa Cruz deposit”.
Table 2: Whole-rock data for representative BIF and chert samples from the “Santa Cruz deposit”. The Ce-anomaly $(Ce/Ce^*)_{PAAS}$ is calculated as $Ce_{(PAAS)}/(0.5*La_{PAAS}+0.5*Pr_{PAAS})$, Eu-anomaly $(Eu/Eu^*)_{PAAS}$ is calculated as $Eu_{(PAAS)}/(0.5*Sm_{PAAS}+0.5*Gd_{PAAS})$.
Table 3: Fe isotope data of representative BIF samples. *relative to the IRMM14 standard. §

$\delta^{56}\text{Fe}$ is measured directly on the MC, but can also calculated from $\delta^{57}\text{Fe} = 2/3 * \delta^{56}\text{Fe}$. For comparison, data from Rapitan IF (Halverson et al., 2011) are shown (in stratigraphic sequence).

Table 4: Carbonate $\delta^{13}\text{C}$ isotope data from the “Santa Cruz deposit”. Published data from the Urucum (Klein and Ladeira, 2004) and Rapitan (Klein and Beukes, 1993) deposits are also shown.

Acknowledgements

This study on the genesis of the Santa Cruz iron ore deposit was funded by Vetria Mineração and University of Western Australia. Thanks to Augusto Mendonça for the initiation of the project.

We highly acknowledge the technical and logistical support from Leandro Silva and Rafael Henchen. Many thanks go to the very helpful geologists and technical assistants of Coffey Mining, especially Geraldo G. Vieira dos Santos and Davi Saldanha for sharing their sound geological understanding of the deposit. Further thanks go to the involved consultants Profs J.L.H. D’el Rey Silva, N. Souza Gomes, P. César Souza, and E. Hiatt for their insights in form of internal reports. The reviewers Michael Bau and Paulo Boggiani as well as two anonymous reviewers of an early version are greatly acknowledged for their input.

References

Alexander, B.W., Bau, M., 2009. Distribution of high field strengh elements (Y, Zr, REE, Hr, Ta, Th, U) in adjacent magnetite and chert bands in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. Precambrian Research, 174: 337-346.

Bau, M., Alexander, B.W., 2009. Distribution of high field strength elements (Y, Zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. Precambrian Research, 174(3-4): 337-346.

Bau, M., Möller, P., 1993. Rare earth element systematics of the chemically precipitated component in early precambrian iron formations and the evolution of the terrestrial

Johnson, C.M., Beard, B.L., Beukes, N.J., Klein, C., O'Leary, J.M., 2003. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology, 144(5): 523-547.

Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473-1499.

Morgan, R. et al., 2013. The origin of coexisting carbonates in banded iron formations: A micro-mineralogical study of the 2.4Ga Itabira Group, Brazil. Precambrian Research, 224(0): 491-511.

Planavsky, N. et al., 2010. Rare Earth Element and yttrium compositions of Archean and
Paleoproterozoic Fe formations revisited: New perspectives on the significance and

caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1(10):
703-708.

of physical and chemical sedimentologic responses. Marine and Petroleum Geology,

Raiswell, R. et al., 2006. Contributions from glacially derived sediment to the global iron
(oxyhydr) oxide cycle: implications for iron delivery to the oceans. Geochimica et

precursor sediments to 2.5-billion-year-old banded iron formations. Geology, 41(4):
435-438.

Microbial Dolomite Precipitation under Aerobic Conditions: Results from Brejo do
Espinho Lagoon (Brazil) and Culture Experiments: IAS Spec Publ, vol. 41. Perspectives in

Schneider, G., 1984. Zur Mineralogie und Lagerstättenbildung der Mangan- und
Eisenerzvorkommen des Urucum-Distriktes (Mato Grosso do Sul, Brasilien), 1. Johann
Wolfgang Goethe-Universität Frankfurt, Frankfurter Geowissenschaftliche Arbeiten,
Serie C Mineralogie, 202 pp.

área oceânica adjacente incluindo depósitos minerais. Escala 1/2.500.000, Dep. Nac.
Produc°. Mineral (D.N.P.M.), Brasilia.

Urucum-Distriktes bei Corumba (Mato Grosso do Sul, Brasilien), 3. Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurter Geowissenschaftliche Arbeiten, Serie C
Mineralogie, 206 pp.

Severmann, S., Johnson, C.M., Beard, B.L., McManus, J., 2006. The effect of early diagenesis on
the Fe isotope compositions of porewaters and authigenic minerals in continental
margin sediments. Geochimica et Cosmochimica Acta, 70(8).

Shannon, R., 1976. Revised effective ionic radii and systematic studies of interatomic distances

Shiraiwa, S., 1994. Flexura da litosfera continental sob os Andes centrais e a origem da bacia do

Sholkovitz, E., Shaw, T.J., Schneider, D., 1992. The geochemistry of rare earth elements in the
seasonally anoxic water column and porewaters of Chesapeake Bay. Geochimica et
Cosmochimica Acta, 56(9): 3389-3402.

<table>
<thead>
<tr>
<th>sample_ID</th>
<th>locality</th>
<th>BIF facies</th>
<th>lithology</th>
<th>Vetria core STCR-DD-core depth</th>
<th>BIF texture</th>
<th>REE pattern</th>
<th>geochemistry</th>
<th>Fe isotope (hematite)</th>
<th>C & O isotope (mineral)</th>
<th>comporable samples</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-03</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>hematite chert</td>
<td>-</td>
<td>III</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>this study</td>
</tr>
<tr>
<td>H-01</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>reworked hematite mud</td>
<td>-</td>
<td>III</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>this study</td>
<td></td>
</tr>
<tr>
<td>H-15</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>reworked hematite mud</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>this study</td>
<td></td>
</tr>
<tr>
<td>H-14</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>reworked hematite mud</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>this study</td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>chert-hematite BIF</td>
<td>12-24</td>
<td>69.9</td>
<td>banded</td>
<td>II</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-15</td>
<td>Santa Cruz</td>
<td>intermed. siliceous</td>
<td>chert-hematite BIF</td>
<td>12-24</td>
<td>75.2</td>
<td>podded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-16</td>
<td>Santa Cruz</td>
<td>transitional</td>
<td>chert-hematite BIF</td>
<td>12-24</td>
<td>96.24</td>
<td>podded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-17</td>
<td>Santa Cruz</td>
<td>transitional</td>
<td>chert-hematite BIF</td>
<td>12-24</td>
<td>111.35</td>
<td>podded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-01</td>
<td>Santa Cruz</td>
<td>transitional</td>
<td>chert-hematite BIF</td>
<td>24-24</td>
<td>142.4</td>
<td>banded</td>
<td>II</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-18</td>
<td>Santa Cruz</td>
<td>transitional</td>
<td>hematite mud</td>
<td>12-24</td>
<td>120</td>
<td>-</td>
<td>II</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-11</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>chert-dolomite-hematite BIF</td>
<td>24-24</td>
<td>215.8</td>
<td>weakly podded</td>
<td>-</td>
<td>yes</td>
<td>-</td>
<td>b</td>
<td>this study</td>
</tr>
<tr>
<td>C-12</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>24-36</td>
<td>167.65</td>
<td>banded</td>
<td>-</td>
<td>-</td>
<td>yes (dol)</td>
<td>b</td>
<td>this study</td>
</tr>
<tr>
<td>C-06</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>24-24</td>
<td>268.21</td>
<td>banded</td>
<td>-</td>
<td>-</td>
<td>yes (dol)</td>
<td>c</td>
<td>this study</td>
</tr>
<tr>
<td>C-07</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>24-24</td>
<td>268.8</td>
<td>weakly podded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>c</td>
<td>this study</td>
</tr>
<tr>
<td>C-05</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>40-32</td>
<td>277.35</td>
<td>weakly podded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>this study</td>
</tr>
<tr>
<td>C-04</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>40-32</td>
<td>278.03</td>
<td>banded</td>
<td>I</td>
<td>yes</td>
<td>-</td>
<td>d</td>
<td>this study</td>
</tr>
<tr>
<td>C-03</td>
<td>Santa Cruz</td>
<td>lower carbonateous</td>
<td>dolomite-chert-hematite BIF</td>
<td>40-32</td>
<td>290.35</td>
<td>banded</td>
<td>-</td>
<td>-</td>
<td>yes (dol)</td>
<td>d</td>
<td>this study</td>
</tr>
<tr>
<td>Lithology</td>
<td>detection limits</td>
<td>REE type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.01</td>
<td>50.21</td>
<td></td>
<td>53.75</td>
<td></td>
<td>54.70</td>
<td></td>
<td>54.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>0.01</td>
<td>13.72</td>
<td></td>
<td>9.81</td>
<td></td>
<td>34.78</td>
<td></td>
<td>38.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.01</td>
<td>0.08</td>
<td></td>
<td>0.25</td>
<td></td>
<td>0.14</td>
<td></td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.18</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.11</td>
<td></td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>5.05</td>
<td></td>
<td>4.78</td>
<td></td>
<td>1.53</td>
<td></td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.01</td>
<td>11.70</td>
<td></td>
<td>11.39</td>
<td></td>
<td>4.90</td>
<td></td>
<td>10.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.01</td>
<td>0.13</td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.13</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>0.01</td>
<td>0.87</td>
<td></td>
<td>0.37</td>
<td></td>
<td>0.14</td>
<td></td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.01</td>
<td>0.36</td>
<td></td>
<td>16.50</td>
<td></td>
<td>64.28</td>
<td></td>
<td>20.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.01</td>
<td>98.37</td>
<td></td>
<td>100.80</td>
<td></td>
<td>98.22</td>
<td></td>
<td>100.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO*</td>
<td>0.10</td>
<td>4.00</td>
<td></td>
<td>3.50</td>
<td></td>
<td>2.00</td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.10</td>
<td>4.30</td>
<td></td>
<td>5.30</td>
<td></td>
<td>4.40</td>
<td></td>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.20</td>
<td>237.00</td>
<td></td>
<td>350.00</td>
<td></td>
<td>58.40</td>
<td></td>
<td>31.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.05</td>
<td>0.44</td>
<td></td>
<td>0.70</td>
<td></td>
<td>0.29</td>
<td></td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td>0.08</td>
<td></td>
<td>0.07</td>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>33.00</td>
<td></td>
<td>35.00</td>
<td></td>
<td>42.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.10</td>
<td>0.70</td>
<td></td>
<td>6.20</td>
<td></td>
<td>3.00</td>
<td></td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.20</td>
<td>1.00</td>
<td></td>
<td>1.20</td>
<td></td>
<td>0.40</td>
<td></td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.50</td>
<td>3.50</td>
<td></td>
<td>4.50</td>
<td></td>
<td>2.50</td>
<td></td>
<td>6.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.50</td>
<td>0.80</td>
<td></td>
<td>1.20</td>
<td></td>
<td>0.70</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
<td>0.80</td>
<td></td>
<td>0.30</td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.20</td>
<td>237.00</td>
<td></td>
<td>350.00</td>
<td></td>
<td>58.40</td>
<td></td>
<td>31.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>0.05</td>
<td>11.90</td>
<td></td>
<td>7.57</td>
<td></td>
<td>10.40</td>
<td></td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.10</td>
<td>7.39</td>
<td></td>
<td>9.41</td>
<td></td>
<td>6.42</td>
<td></td>
<td>10.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>0.01</td>
<td>2.56</td>
<td></td>
<td>1.84</td>
<td></td>
<td>2.14</td>
<td></td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>0.05</td>
<td>10.50</td>
<td></td>
<td>7.97</td>
<td></td>
<td>9.17</td>
<td></td>
<td>7.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.01</td>
<td>2.02</td>
<td></td>
<td>1.62</td>
<td></td>
<td>1.68</td>
<td></td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.05</td>
<td>0.42</td>
<td></td>
<td>0.35</td>
<td></td>
<td>0.38</td>
<td></td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.01</td>
<td>2.34</td>
<td></td>
<td>1.94</td>
<td></td>
<td>2.03</td>
<td></td>
<td>3.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.01</td>
<td>0.34</td>
<td></td>
<td>0.32</td>
<td></td>
<td>0.32</td>
<td></td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.01</td>
<td>2.18</td>
<td></td>
<td>2.15</td>
<td></td>
<td>2.09</td>
<td></td>
<td>8.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.01</td>
<td>0.48</td>
<td></td>
<td>0.52</td>
<td></td>
<td>0.48</td>
<td></td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.01</td>
<td>1.55</td>
<td></td>
<td>1.67</td>
<td></td>
<td>1.55</td>
<td></td>
<td>7.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.00</td>
<td>0.242</td>
<td></td>
<td>0.265</td>
<td></td>
<td>0.248</td>
<td></td>
<td>1.270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.01</td>
<td>1.66</td>
<td></td>
<td>1.72</td>
<td></td>
<td>1.71</td>
<td></td>
<td>9.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.002</td>
<td>0.269</td>
<td></td>
<td>0.266</td>
<td></td>
<td>0.245</td>
<td></td>
<td>1.460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM_REE</td>
<td></td>
<td>43.85</td>
<td></td>
<td>37.61</td>
<td></td>
<td>38.89</td>
<td></td>
<td>62.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM_LREE</td>
<td></td>
<td>34.37</td>
<td></td>
<td>29.31</td>
<td></td>
<td>28.78</td>
<td></td>
<td>8.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM_MREE</td>
<td></td>
<td>9.06</td>
<td></td>
<td>8.85</td>
<td></td>
<td>8.70</td>
<td></td>
<td>34.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Sm</td>
<td>0.86</td>
<td>0.68</td>
<td></td>
<td>0.90</td>
<td></td>
<td>0.43</td>
<td></td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr/Sm</td>
<td>0.80</td>
<td>0.71</td>
<td></td>
<td>0.80</td>
<td></td>
<td>0.54</td>
<td></td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd/Tb</td>
<td>0.85</td>
<td>0.68</td>
<td></td>
<td>0.72</td>
<td></td>
<td>0.24</td>
<td></td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb/Yb</td>
<td>0.75</td>
<td>0.68</td>
<td></td>
<td>0.68</td>
<td></td>
<td>0.37</td>
<td></td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Yb</td>
<td>0.53</td>
<td>0.32</td>
<td></td>
<td>0.45</td>
<td></td>
<td>0.05</td>
<td></td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr/Yb</td>
<td>0.49</td>
<td>0.34</td>
<td></td>
<td>0.40</td>
<td></td>
<td>0.06</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce/Yb</td>
<td>0.31</td>
<td>0.58</td>
<td></td>
<td>0.31</td>
<td></td>
<td>0.78</td>
<td></td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu/Yb</td>
<td>0.09</td>
<td>0.92</td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.87</td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/No</td>
<td>37.29</td>
<td>35.00</td>
<td></td>
<td>36.67</td>
<td></td>
<td>39.73</td>
<td></td>
<td>34.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO/MgO</td>
<td>2.30</td>
<td>2.44</td>
<td></td>
<td>3.2</td>
<td></td>
<td>3.3</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti/Zr</td>
<td>18</td>
<td>26.11</td>
<td></td>
<td>48</td>
<td></td>
<td>39.5</td>
<td></td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2/Ai2O3</td>
<td>0.260</td>
<td>0.110</td>
<td></td>
<td>0.340</td>
<td></td>
<td>0.220</td>
<td></td>
<td>0.260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu+Pb+Zn</td>
<td></td>
<td>12</td>
<td></td>
<td>11</td>
<td></td>
<td>6</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn/As</td>
<td></td>
<td>0.0013</td>
<td></td>
<td>0.0024</td>
<td></td>
<td>0.0051</td>
<td></td>
<td>0.0175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn/Co</td>
<td>2.59</td>
<td>1.29</td>
<td></td>
<td>2.31</td>
<td></td>
<td>1.68</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Sample</td>
<td>stratigraphic zone</td>
<td>lithology</td>
<td>n</td>
<td>$\delta^{57}\text{Fe}^*$</td>
<td>1se</td>
<td>$\delta^{56}\text{Fe}^*$</td>
<td>1se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>H-15</td>
<td>intermediate siliceous</td>
<td>reworked hematite mud</td>
<td>3</td>
<td>-0.04</td>
<td>0.07</td>
<td>0.01</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>H-14</td>
<td>intermediate siliceous</td>
<td>reworked hematite mud</td>
<td>3</td>
<td>-0.25</td>
<td>0.01</td>
<td>-0.18</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>C-14</td>
<td>intermediate siliceous</td>
<td>chert-hematite BIF</td>
<td>3</td>
<td>-0.71</td>
<td>0.07</td>
<td>-0.49</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>C-11</td>
<td>lower carbonaceous</td>
<td>chert-dolomite-hematite BIF</td>
<td>3</td>
<td>-1.22</td>
<td>0.04</td>
<td>-0.83</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>C-06</td>
<td>lower carbonaceous</td>
<td>dolomite-chert-hematite BIF</td>
<td>3</td>
<td>-2.62</td>
<td>0.03</td>
<td>-1.83</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.19.8</td>
<td>15.1m</td>
<td>hematitic silt</td>
<td>n.d.</td>
<td>0.944</td>
<td>0.023</td>
<td>0.635</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.21.1</td>
<td>13.8m</td>
<td>hematitic jaspilite</td>
<td>n.d.</td>
<td>0.858</td>
<td>0.015</td>
<td>0.575</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.21.3</td>
<td>13.6m</td>
<td>hematitic jaspilite (±calcite)</td>
<td>n.d.</td>
<td>1.196</td>
<td>0.045</td>
<td>0.821</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.24.8</td>
<td>10.1m</td>
<td>hematitic jaspilite (±calcite)</td>
<td>n.d.</td>
<td>0.652</td>
<td>0.006</td>
<td>0.441</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.26.1</td>
<td>8.8m</td>
<td>hematitic mud</td>
<td>n.d.</td>
<td>-0.268</td>
<td>0.045</td>
<td>-0.182</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.32.9</td>
<td>2 m</td>
<td>hematitic mud</td>
<td>n.d.</td>
<td>-0.426</td>
<td>0.013</td>
<td>-0.283</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>G22.34.7</td>
<td>0.2 m</td>
<td>hematitic silt</td>
<td>n.d.</td>
<td>-0.65</td>
<td>0.019</td>
<td>-0.431</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>locality</td>
<td>stratigraphic zone</td>
<td>lithology</td>
<td>mineral</td>
<td>sample ID</td>
<td>mineral sample ID</td>
<td>d^{13}C VPDB</td>
<td>data source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>lower carbonaceous</td>
<td>dolomite-chert-hematite BIF</td>
<td>dolomite-cryptocrystalline hematite band</td>
<td>C-03</td>
<td>3C carb1</td>
<td>-3.8</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-03</td>
<td>3C carb1-re</td>
<td>-3.8</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-03</td>
<td>3C carb2</td>
<td>-3.7</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-03</td>
<td>3C carb2-re</td>
<td>-3.7</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intermediate carbonaceous</td>
<td>dolomite-chert-hematite BIF</td>
<td>dolomite-cryptocrystalline hematite band</td>
<td>C-06</td>
<td>6C carb1</td>
<td>-4.3</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-06</td>
<td>6C carb1-re</td>
<td>-4.1</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-06</td>
<td>6C carb2</td>
<td>-4.0</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-06</td>
<td>6C carb2-re</td>
<td>-4.0</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate carbonaceous</td>
<td>dolomite-chert-hematite BIF</td>
<td>dolomite-cryptocrystalline hematite band</td>
<td>C-12</td>
<td>12C carb1</td>
<td>-3.4</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-12</td>
<td>12C carb1-re</td>
<td>-3.5</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-12</td>
<td>12C carb2</td>
<td>-3.4</td>
<td>present study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-12</td>
<td>12C carb2-re</td>
<td>-3.5</td>
<td>present study (repeat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urucum</td>
<td>chert-dolomite-hematite BIF</td>
<td>dolomite-cryptocrystalline hematite band</td>
<td>dolomite-cryptocrystalline hematite band</td>
<td>U-2-6</td>
<td></td>
<td>-7.02</td>
<td>Klein and Ladeira 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-2-1</td>
<td></td>
<td>-6.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-2-3</td>
<td></td>
<td>-5.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-2-7</td>
<td></td>
<td>-4.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-2-8</td>
<td></td>
<td>-4.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-2-9</td>
<td></td>
<td>-4.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapitan</td>
<td>nodular IF</td>
<td>calcite</td>
<td></td>
<td>Y-7_142</td>
<td></td>
<td>-3.37</td>
<td>Klein and Beukes 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>banded IF</td>
<td>calcite</td>
<td></td>
<td>Y-7_152.8</td>
<td></td>
<td>-2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IF arenite</td>
<td>calcite</td>
<td></td>
<td>Y-5_158.7</td>
<td></td>
<td>-0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Archean - Paleoproterozoic

- Cristalline Basement
 - (Amazon craton and Rio Apa block)

Neoproterozoic

- Cratonic cover rocks
 - (Jacadigo, Corumbá, Araras Groups)

- Passive Margin Rocks
 - (Cuiabá Group)

Phanerozoic

- Younger cover rocks
- Silurian-Devonian
- Boqui Group (BOL)
- Jacadigo Group (BRA)

- Cristalline Basement
- Neoproterozoic
- Cover Rocks
A Pantanal Formation
Alluvium
0
5 km
10 km

B R A Z I L

Corumbá Group (bedding shown right)
Dolomite, Limestone and Siltstone

Dolomite, Limestone and Siltstone

Banda Alta Formation
Hematite BIF, Diamictites, Manganese Ore Layers

Urucum Formation
Sandstone and Arkose

Rio Apa Block
Crystalline Basement

Jacadigo Group

Main Hills (Morros)
Brasiliano Cycle Anticline
Brasiliano Cycle Syncline
Synthetic Normal Fault
Active Mining Areas
Inactive Mining Areas

Pantanal

Jacadigo Lake

Quaternary
Pantanal Formation
Alluvium

Neoproterozoic - Cambrian
Corumbá Group (bedding shown right)
Dolomite, Limestone and Siltstone

Banda Alta Formation
Hematite BIF, Diamictites, Manganese Ore Layers

Córrego das Pedras Formation
Sandstone and Arkose, Manganese Ore Layer

Urucum Formation
Sandstone and Arkose

Archean - Paleoproterozoic
Rio Apa Block
Crystalline Basement

1-10

To Cerrado Grande

Jacadigo Group

Paraguay River

Albuquerque
BIF w/ siliciclastic material

- minor Mn-rich bands

dolomite-chert-hematite BIF

chert-hematite BIF

- hematite chert
- upper reworked hematite mud
- hematite chert
- chert-hematite BIF (w/ siliciclastic bands)
- chemical hematite mud, diamictite layers

upper diamictite
- (non-ferruginized, calcitic)
- minor chert-hematite BIF

middle diamictite
- (ferruginized, silicious)
- hematite chert

transitional zone
- dolomite-chert-hematite BIF
- chemical hematite mud layers
diamictite layers

lower diamictite
- (ferruginized, calcitic)
- BIF w/ siliciclastic material
- minor Mn-rich bands

fine to medium siliciclastics
- turbiditic facies,
- basal Mn-rich siliciclastic band

fine to medium coarse siliciclastics,
- (reverse graded, non-ferruginized, calcitic cement, gneiss and marble clasts)
- minor chert-siderite-magnetite-hematite BIF

Riog Preto
- reworked hematite mud

hematite chert

diamictite

Mn-oxide rich layer
a) NW-SE-SSE cross section

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>298.5</td>
<td>412.0</td>
<td>392.1</td>
<td>434.5</td>
<td>255.0</td>
<td>236.2</td>
<td>332.65</td>
<td>180.5</td>
<td>135.8</td>
</tr>
<tr>
<td>340</td>
<td>323.4</td>
<td>402.4</td>
<td>343.5</td>
<td>331.3</td>
<td>120</td>
<td>145.04</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.2</td>
<td>300.0</td>
<td>240.0</td>
<td>240.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>260.0</td>
<td>220.0</td>
<td>220.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>240.0</td>
<td>200.0</td>
<td>200.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>220.0</td>
<td>180.0</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>200.0</td>
<td>160.0</td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>180.0</td>
<td>140.0</td>
<td>140.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>160.0</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>140.0</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>120.0</td>
<td>80.0</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>100.0</td>
<td>60.0</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>80.0</td>
<td>40.0</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>60.0</td>
<td>20.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>342.0</td>
<td>40.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) SSW-NNE cross section

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>405.9</td>
<td>434.5</td>
<td>255.0</td>
<td>342.2</td>
<td>332.65</td>
<td>180.5</td>
<td>135.8</td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>418.8</td>
<td>343.5</td>
<td>331.3</td>
<td>120</td>
<td>145.04</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>412.1</td>
<td>240.0</td>
<td>240.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>396.0</td>
<td>220.0</td>
<td>220.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>366.4</td>
<td>180.0</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>3055.6</td>
<td>160.0</td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>235.1</td>
<td>120.0</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>206.0</td>
<td>80.0</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>180.5</td>
<td>60.0</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>160.0</td>
<td>40.0</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>140.0</td>
<td>20.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580.7</td>
<td>354.6</td>
<td>120.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Colluvium
- Porous leached BIF
- Goethite-altered BIF
- Chert-hematite BIF
- Hematite mud, chert, BIF w/ clastic layers
- Ferruginized breccia, siliceous
- Mn-rich greywacke or Mn-oxide
- Breccia/greywacke

Notes:
- Base of upper diamictite
- Top of lower diamictite
- Fault
Figure 5a shows the tenement boundary and the laterite outcrop above 24-36. The blue line represents Figure 5a, and the red line represents Figure 5b. The yellow area indicates colluvium, and porous leached BIF is marked in red. Chert-hematite BIF with clastic layers is shown in darker red. Hematite chert (△) and mud (●) samples are indicated. Ferruginized breccia, siliceous chert-hematite BIF with clastic layers, and chert-dolomite-hematite BIF with clastic layers are also marked in different shades of red.

The map highlights the following features:
- Blue line: Figure 5a
- Red line: Figure 5b
- Colluvium
- Porous leached BIF
- Chert-hematite BIF
- Hematite chert (△) and mud (●) samples
- Ferruginized breccia, siliceous chert-hematite BIF
- Chert-dolomite-hematite BIF
- Breccia/greywacke
- SSW
- NNE
- NNW
- Faults

The map also shows the latitudes and longitudes for various locations, such as 24-36, 32-28, 28-32, and 24-24, with corresponding elevations and geological features. The map also includes sample points C-01 to C-16 and H-01 to H-15.
a: C-06 (specimen)

H mesoband
nodular dolomite ±crxH
mesoband

b: half core view

H mesoband
dolomite-chert mesoband
dolomite-chert pseudonodules

c: LS-012 (TLx)

chert
spheroid
lepidoblastic H

d: LS-015 (TLx)

dolomite ±crxH
dolomite-chert pseudonodules

e: LS-015 (SEM BSE)

Fe-dolomite ±crxH
chert

f: C-04 (RL)

cellular H
lepidoblastic H

Scale: 1 cm
Scale: 500 μm
Scale: 100 μm
a: C-14 (specimen)

b: half core view

dissolution seam

1 cm

c: DE-L-11 (TLx)

chert±crxH

100 μm

d: C-14 (RL)

500 μm

H flattented mesoband (pod)

e: C-01 (RL)

chert±crxH

100 μm

f: DE-L-11 (TLx)

spheroids

500 μm
a: H-03 (specimen)
H lamina

b: H-03 (RL)

chert

c: H-03 (RLX)

chert

d: H-03 (RL)

H vein

coarse H

e: H-01 (specimen)

fine H

f: H-01 (RL)

detrital H

clast

g: H-01 (RL)

clast

h: C-18 (RLx)

crystalline H (granoblastic)

fine H (granoblastic)
MgO
Fe (total)
SiO$_2$
Fe (total)
a
Al O$_2$
CaO
Fe (total)
b
P O$_2$
Fe (total)
c

Grab samples
- hematite chert (H-03)
- reworked hematite mud (H-01)
- podded chert-hematite BIF (C-15, C-16, C-17)
- banded chert-hematite BIF (C-01, C-14)
- chemical hematite mud (C-18)
- podded dolomite-hematite BIF (C-05, C-07)
- banded dolomite-hematite BIF (C-01, C-04)

Vetria database
- porous leached BIF
- chert-hematite BIF
- chert-dolomite-hematite BIF
- BIF w/ clastic layers
a) TN and FP:

- Podded chert-hematite BIF (C-15, C-16, C-17)
- Podded dolomite-hematite BIF (C-05, C-07)
- Banded dolomite-hematite BIF (C-04)

b) TP and FN:

- Chemical hematite mud (C-18)
- Reworked hematite mud (H-01)

REE I pattern

REE II pattern

REE III pattern
podded chert-hematite BIF (C-15, C-16, C-17)
banded dolomite-chert-hematite BIF (C-04)

banded chert-hematite BIF (C-01, C-14)

hematite “mud”, dolomite-bearing (C-18)

Urucum, chert-carbonate-hematite BIF
Urucum, chert-hematite BIF
Rapitan, chert-carbonate-hematite BIF
Rapitan, chert-hematite BIF
Santa Cruz BIF (REE I)

Rapitan hematite mud (average)
Rapitan hematite chert (average)

modern seawater
low-T vent fluids @30°C
high-T vent fluids @350-370°C

Rapitan hematite mud (Halverson)
Rapitan hematite chert (Halverson)

IF-G: Isua BIF
Rapitan chert-hematite BIF (Baldwin)
Rapitan chert-carbonate-hematite BIF (Baldwin)
Rapitan chert-hematite BIF (Halverson)

Urucum chert-hematite BIF (low REE fractionation)
Urucum chert-dolomite-hematite BIF (low REE fractionation)
Urucum chert-hematite BIF (high REE fractionation)
Urucum chert-dolomite-hematite BIF (high REE fractionation)
REE I-type: primary hydrogenetic Mn-Co covariance
REE II-type: alteration?
REE III-type: detritus (ash) not influencing Mn-Co covariance

Y/Ho vs Zn/Co plot
REE I pattern: podded chert-hematite BIF (C-15, C-16, C-17), podded dolomite-hematite BIF (C-05, C-07), banded dolomite-hematite BIF (C-04)

REE II pattern: chemical hematite "mud" (C-18), podded chert-hematite BIF (C-01, C-14)
REE III pattern: hematite chert (H-03), reworked hematite "mud" (H-01)

REE I and REE II transition (Pr/Yb)_{HAP} vs (Pr/Yb)_{PAAS}
REE I and REE II transition (Pr/Yb)_{HAP} vs (Pr/Yb)_{PAAS}
Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{57}Fe</td>
<td>-0.04 to -4.1</td>
</tr>
<tr>
<td>δ^{13}C</td>
<td>-2.6 to -0.71</td>
</tr>
<tr>
<td>(Ce/Ce*)$_{PAAS}$</td>
<td>0.48 to 0.86</td>
</tr>
<tr>
<td>(Pr/Yb)$_{PAAS}$</td>
<td>0.06 to 0.12</td>
</tr>
<tr>
<td>Y/Ho</td>
<td>34.1 to 37.2</td>
</tr>
<tr>
<td>Zn/Co</td>
<td>18.3 to 19.6</td>
</tr>
</tbody>
</table>

Diagram:

- **Upper basin:**
 - δ^{57}Fe
 - δ^{13}C
 - (Ce/Ce*)$_{PAAS}$
 - (Pr/Yb)$_{PAAS}$
 - Y/Ho
 - Zn/Co

- **Deep basin:**
 - BIF facies
 - Redoxcline
 - Upwelling
 - Diluted oxidized glacial meltwater
 - Carbonate facies
 - Chert facies

- **Assumption:**
 - Only relative variations shown, not to scale!