Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping

Williams, R. , Brasington, J., Vericat, D. and Hicks, M. (2014) Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39(2), pp. 167-183. (doi: 10.1002/esp.3437)

Full text not currently available from Enlighten.

Abstract

Quantifying the morphology of braided rivers is a key task for understanding braided river behaviour. In the last decade, developments in geomatics technologies and associated data processing methods have transformed the production of precise, reach-scale topographic datasets. Nevertheless, generating accurate Digital Elevation Models (DEMs) remains a demanding task, particularly in fluvial systems. This paper identifies a threefold set of challenges associated with surveying these dynamic landforms: complex relief, inundated shallow channels and high rates of sediment transport, and terms these challenges the ‘morphological’, ‘wetted channel’ and ‘mobility’ problems, respectively. In an attempt to confront these issues directly, this paper presents a novel survey methodology that combines mobile terrestrial laser scanning and non-metric aerial photography with data reduction and surface modelling techniques to render DEMs from the resulting very high resolution datasets. The approach is used to generate and model a precise, dense topographic dataset for a 2.5 km reach of the braided Rees River, New Zealand. Data were acquired rapidly between high flow events and incorporate over 5 x 109 raw survey observations with point densities of 1600 pts m-2 on exposed bar and channel surfaces. A detailed error analysis of the resulting sub-metre resolution is described to quantify DEM quality across the entire surface model. This reveals unparalleled low vertical errors for such a large and complex surface model; between 0.03 and 0.12 m in exposed and inundated areas of the model, respectively.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Williams, Professor Richard
Authors: Williams, R., Brasington, J., Vericat, D., and Hicks, M.
Subjects:G Geography. Anthropology. Recreation > GB Physical geography
College/School:College of Science and Engineering > School of Geographical and Earth Sciences > Geography
Journal Name:Earth Surface Processes and Landforms
Publisher:Wiley
ISSN:0197-9337
ISSN (Online):1096-9837

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
0ReesScanJames BrasingtonNERCUNSPECIFIED