Functional Characterization of Piezocrystals Monitored under High Power Driving Conditions

Xiaochun Liao1,2, Muhammad Sadiq1, Tingyi Jiang1, Zhihong Huang1, Sandy Cochran3, 
1School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK 
2Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, DD2 1FD, UK 
3School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK

Abstract—Relaxor-based ferroelectric single crystals such as PMN-PT are known to exhibit high piezoelectric properties compared with conventional piezoelectric ceramic materials, such as PZT-8. With advances in piezoelectric material development, including compositional engineering, single crystals with higher rhombohedral-to-tetragonal phase transition temperature (TRT), higher coercive field (EC) and higher mechanical quality factor (Qm) have emerged, the principal example being Mn:PIN-PMN-PT. The improvements have opened up a wider application range, including more demanding high power applications where the performance of conventional materials may deteriorate at elevated temperatures resulting from intrinsic loss mechanisms. Characterization of these piezocrystals under practical and active conditions is therefore important, improving understanding of material behavior and facilitating transducer design in finite element analysis for demanding applications. In this paper, we report an active piezoelectric material characterization system that allows high resolution impedance spectroscopy under conditions similar to those experienced by piezoelectric materials in high power ultrasonic applications. The temperature consequent on the drive voltage is adaptively stabilized using a control algorithm. System function has been verified by testing with a Mn:PIN-PMN-PT thickness-extensional plate and functional characterization has been conducted on Generation I, II and III piezocrystals, with detailed analyses and comparisons of performance stability and material property variation with temperature.

Keywords- piezocrystals; piezocrystal characterization; functional characterization; behaviour at high power; thermal response

I. INTRODUCTION

Relaxor-based ferroelectric single crystal piezoelectric materials (“piezocrystals”) have gained huge interest in both academic research and industrial applications [1]. These materials exhibit extraordinary piezoelectric properties, making them suitable for a range of passive and active applications, including in high bandwidth and high sensitivity piezoelectric transducers [2]. The development of piezocrystals over the last two decades has led to three generations, distinguished by composition: Generation (Gen.) I - binary, e.g. PMN-PT; Gen. II - ternary, e.g. PIN-PMN-PT; and Gen. III - doped ternary, e.g. Mn:PIN-PMN-PT. With recent advances in piezoelectric material development, including compositional engineering, piezocrystals with higher rhombohedral-to-tetragonal phase transition temperature (TRT), higher coercive field (EC) and higher mechanical quality factor (Qm) have been made possible. These properties are particularly attractive for high power applications, such as therapeutic ultrasound transduction and underwater SONAR projection [3]. In such applications, heat generation results from losses through three mechanisms: dielectric loss, piezoelectric loss and mechanical loss. Affected by both high electric field and high self-heating temperature, the piezocrystal properties vary significantly and functional performance may deteriorate.

As shown in Fig.1, when a 10 x 10 x 1 mm³ PMN-PT thickness-extensional (TE) plate is driven at 110 Vp, the temperature increases to more than 130°C, well beyond TRT ~ 96°C [1]. Therefore, it is essential to characterize such materials in active configurations, allowing better understanding of property variation and facilitating transducer design in finite element analysis for more demanding high power applications. However, most of the characterization methods reported to date are based on passive approaches in which the piezoelectric material samples are exposed to externally applied environmental temperature and uniaxial pressure. Characterization based on active approaches has also been reported, where a high electric field is applied at ambient temperature [4, 5]. An effective active characterization system was previously reported, integrating the functions of impedance spectroscopy, infrared thermometry, and laser vibrometry; however, only variations in resonant frequency, vibration velocity, and input power were reported, and material property variations were not considered [6].

![Figure 1. Temperature rise by heat generation in a PMN-PT TE plate with a driving voltage of 110 Vp](image)

In the study described here, aiming at characterization of variations in the fundamental properties of piezoelectric material in active transduction, we first developed an active piezoelectric characterization system based on high resolution impedance spectroscopy and adaptive temperature stabilization, as explained in Section II. Then, working

---

Xiaochun Liao holds a SUPA Studentship with funding drawn from the Scottish Funding Council via its SPIRIT initiative.
During HRIS measurement, the PXI system is driven under a constant driving voltage. To maintain the temperature for assessing the property variation under this active condition, the temperature stabilization, the whole impedance curve is realized by adaptively adjusting the voltage and the driving frequency to track the piezoelectric sample’s resonance, as reported previously [8, 9]. This is achieved with a PID controller programmed in LabVIEW in the PXI system with Eqns 1 and 2:

\[ f(k) = f(k-1) + \Delta f(k) \]  \hspace{1cm} (1a)
\[ \Delta f(k) = k_{pf} \Delta \theta(k) + k_{d} \sum_{j} \Delta \theta(j) + k_{df} [\Delta \delta T(k) - \Delta \delta T(k-1)] \]  \hspace{1cm} (1b)
\[ V(k) = V(k-1) + \Delta V(k) \]  \hspace{1cm} (2a)
\[ \Delta V(k) = k_{v} \Delta T(k) + k_{i} \sum \Delta T(j) + k_{d} \Delta T(k) \]  \hspace{1cm} (2b)

where \( f(k) \) is the driving frequency, \( \Delta f(k) \) is an incremental adjustment, \( \theta(k) \) is the measured impedance phase, \( V(k) \) is the driving voltage, \( \Delta T(k) \) is the difference between the expected and measured temperatures; \( k_{pf}, k_{d}, \) and \( k_{df} \) are proportional, integral and differentiation coefficients for frequency adjustment; and \( k_{v}, k_{i}, \) and \( k_{d} \) are proportional,
integral and differentiation coefficients for voltage adjustment.

III. SYSTEM WORKING CONDITIONS

After implementation of the active piezoelectric characterization system, function verification experiments were conducted with a 5 x 5 x 0.5 mm³ Mn:PIN-PMN-PT TE plate mounted on a spring-loaded fixture as shown in Fig. 5(a). The experimental objective was to measure the TE plate’s impedance curve in the frequency range of 10 Hz – 10 MHz with 800 points at a stabilized temperature of 80°C. The thermal response was recorded with the thermal imaging camera and used as feedback for the adaptive control of the driving voltage, as shown in Fig. 5 (b).

![Figure 5](image)

The temperature tolerance limit was initially set in the range 75 – 85°C. During adaptive driving, the sample temperature was controlled between a lower bound, 76.5 – 77.8°C, and an upper bound, 80.0 – 80.2°C, for impedance measurement. The driving voltage was adjusted adaptively in the range 5.0 – 17.5 V, during the whole measurement time of 250 sec., as shown in Fig. 6.

![Figure 6](image)

The impedance curve was measured with a constant driving voltage of 5 V from the power amplifier, with frequency swept from 10 Hz to 10 MHz by the signal generator. Minimum voltage and maximum current peaks were experienced at the sample resonance, and maximum voltage and minimum current peaks at the sample anti-resonance, as shown in Fig. 7 (a). Spikes in the voltage and current responses indicated the starting points in each period of HRIS measurement, following previous periods of temperature stabilization. Despite of the transient spikes in voltage and current, the measured impedance was smooth, as shown in Fig. 7 (b) before fixture compensation.

![Figure 7](image)

![Figure 8](image)

Table I. Maximum voltage $V_p$ for different operating temperatures for three generations of piezocrystals

<table>
<thead>
<tr>
<th>$T$</th>
<th>Mn: PIN-PMN-PT</th>
<th>PIN-PMN-PT</th>
<th>PMN-PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °C</td>
<td>5 V</td>
<td>11 V</td>
<td>10 V</td>
</tr>
<tr>
<td>60 °C</td>
<td>9 V</td>
<td>16 V</td>
<td>13 V</td>
</tr>
<tr>
<td>80 °C</td>
<td>12 V</td>
<td>20 V</td>
<td>20 V</td>
</tr>
<tr>
<td>100 °C</td>
<td>13 V</td>
<td>14 V</td>
<td>30 V</td>
</tr>
<tr>
<td>120 °C</td>
<td>13 V</td>
<td>42 V</td>
<td>32 V</td>
</tr>
</tbody>
</table>

IV. CHARACTERISATION OF PIEZOCRYSALS

Utilizing the characterization system, 5 x 5 x 0.5 mm³ TE-mode plates of Generations I, II and III piezocrystals were characterized at five stabilized temperatures $T \in \{40^\circ\text{C}, 60^\circ\text{C}, 80^\circ\text{C}, 100^\circ\text{C}, 120^\circ\text{C}\}$. To achieve these temperatures by self-heating, different driving voltages were applied, with $V_p$ indicating the maximum voltage during the adaptive driving periods as shown in Table I. In this table, the values highlighted in yellow led to possible piezocrystal phase transitions i.e. when the impedance peaks changed significantly as shown, e.g. at 80°C for PMN-PT in Fig. 8, while the values highlighted in green led to depolarization of the piezocrystal samples i.e. when impedance peaks disappeared, e.g. as shown at 100°C in Fig. 8. The temperature values recorded at depolarization were 100°C and 120°C for PMN-PT and PIN-PMMT-PT respectively, which are lower than the depolarization temperature values of 135°C and 191°C reported in literature [1]. This may be caused by a combination of high temperature and high electric field.

TABLE I. MAXIMUM VOLTAGE $V_p$ FOR DIFFERENT OPERATING TEMPERATURES FOR THREE GENERATIONS OF PIEZOCRYSALS

The four key properties $k_3$, $e_{33}^s$, $e_{33}^p$, and $e_{33}^{pl}$ were calculated using the IEEE standards [7], based on the impedance
measurements of the piezocrystal TE plates under different electric field-induced operating temperatures. As shown in Fig. 9, all three generations of piezocrystals followed similar trends. Electromechanical coupling coefficient, $k_r$, and piezoelectric constant, $e_{33}$, decreased as the phase transition happened; clamped permittivity, $\varepsilon_{33}^c$, increased with temperature; and the stiffness constant, $c_{11}^D$, decreased with increasing temperature.

![Figure 9](image.png)

**Figure 9.** Material property variation in (a) $k_r$, (b) $e_{33}^c$, (c) $e_{33}$, and (d) $c_{11}^D$ over different operating temperatures for PMN-PT, PIN-PMN-PT and Mn:PIN-PMN-PT

To assess the performance stability at field-induced elevated temperatures, variations in the key properties were compared among the three generations of piezocrystals, as shown in Fig. 10. Generally the third generation Mn:PIN-PMN-PT exhibited the smallest variations, compared with PIN-PMN-PT and PMN-PT. One issue of note is that $k_r$ was slightly lower than expected value of 0.58 [10] for the Mn:PIN-PMN-PT sample, which may have been caused by improper usage or handling of this sample before the test. Despite this defect, stable behavior was still observed at different temperatures for the Mn:PIN-PMN-PT TE sample.

![Figure 10](image.png)

**Figure 10.** Variation percentage of $k_r$, $e_{33}^c$, $e_{33}$, and $c_{11}^D$ for Mn:PIN-PMN-PT, PIN-PMN-PT and PMN-PT

V. CONCLUSIONS AND FUTURE WORK

This paper has reported the development of an active piezoelectric characterization system with high resolution impedance spectroscopy and adaptive temperature stabilization to characterize piezoelectric materials for high power ultrasound applications. Characterization of three generations of piezocrystals based on performance stability and material property variation confirmed higher stability for Mn:PIN-PMN-PT sample and demonstrated that the characterization system is useful for active functional characterization. Future work will explore integration with laser vibrometry and further use of the system.

ACKNOWLEDGMENTS

The authors thank the SFC-funded SUPA INSPIRE project for support of studentst. This work has been supported by UK EPSRC project of EP/K020013.

REFERENCES