Energy-band parameter of atomic layer deposited Al2O3 & sulphur passivated molecular beam epitaxially grown (110) In0.53Ga0.47As surfaces

Fu, Y.-C., Peralagu, U. , Ignatova, O. , Li, X. , Lin, J., Povey, I., Monaghan, S., Droopad, R., Hurley, P. and Thayne, I. (2015) Energy-band parameter of atomic layer deposited Al2O3 & sulphur passivated molecular beam epitaxially grown (110) In0.53Ga0.47As surfaces. In: 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 Jun - 02 Jul 2015, pp. 346-348. (doi:10.1109/PRIME.2015.7251406)

Full text not currently available from Enlighten.

Abstract

Based on sulphur passivation (10% (NH<sub>4</sub>)<sub>2</sub>S, 20min), the interface of MOS capacitors between atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub> and (110)-oriented p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As layers indicate the capability of Fermi level movement and minority carrier inversion. C<sub>ox</sub> has effectively extracted by Gm/<i>w</i> and -<i>w</i>dC/d<i>w</i>. Forming gas annealing (N<sub>2</sub>:H<sub>2</sub> 5%:95% at 350<sup>o</sup>C, 30min) improves minority carrier response and the interface trap density around the midgap estimated to be 4.4x10<sup>12</sup> (1.6x10<sup>12</sup>) cm<sup>-2</sup>eV<sup>-1</sup> before (and after) FGA. Moreover, Fowler-Nordheim (FN) tunneling current provides the conduction band offset at the surface between Al<sub>2</sub>O<sub>3</sub> and In<sub>0.53</sub>Ga<sub>0.47</sub>As (110)-oriented layer is ~1.81eV and the barrier height is estimated to be the same after FGA. Finally, the band parameter of Al<sub>2</sub>O<sub>3</sub> and In<sub>0.53</sub>Ga<sub>0.47</sub>As (110)-oriented layer has been firstly reported.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Li, Dr Xu and Thayne, Professor Iain and Ignatova, Ms Olesya and Peralagu, Mr Uthayasankaran
Authors: Fu, Y.-C., Peralagu, U., Ignatova, O., Li, X., Lin, J., Povey, I., Monaghan, S., Droopad, R., Hurley, P., and Thayne, I.
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Research Group:Micro- and Nanotechnology (Ultrafast Systems)

University Staff: Request a correction | Enlighten Editors: Update this record