The Massawa gold deposit, Eastern Senegal, West Africa: an orogenic gold deposit sourced from magmatically derived fluids?

Treloar, P. J., Lawrence, D. M., Senghor, D., Boyce, A. and Harbidge, P. (2015) The Massawa gold deposit, Eastern Senegal, West Africa: an orogenic gold deposit sourced from magmatically derived fluids? Geological Society, London, Special Publications, 393(1), pp. 135-160. (doi: 10.1144/SP393.12)

Full text not currently available from Enlighten.

Abstract

The Massawa gold project is situated on the Senegalese side of the highly prospective/productive Palaeo-Proterozoic (Birimian) Kédougou–Kéniéba inlier, which hosts several world-class orogenic gold deposits/districts in western Mali (e.g. Loulo and Sadiola). The Massawa ore body has a strike length of at least 4 km and a current resource of 3.61 Moz at a grade of 2.8 g t−1. The ore body is structurally controlled and located within a package of low-grade regionally metamorphosed volcaniclastic sediments (agglomerates, tuffs and ash-tuffs), quartz–feldspar and lithic wackes, carbonaceous shales, hydrothermal breccias, and gabbro and porphyry sills. These rocks have undergone pervasive silica alteration followed by a sericite–ankerite–chlorite alteration event related to mineralization. Two major styles of mineralization are recognized at Massawa from field and laboratory studies. The first stage of sulphide–Au mineralization is associated with disseminated arsenopyrite–pyrite, which follows shear zones in the sedimentary and volcano-sedimentary host rocks. The second stage consists of quartz–stibnite±tetrahedrite veining distinguished by coarse visible gold and represents a late stage overprint on the primary mineralization. The two stages of gold mineralization are separated by a phase of quartz–molybdenite veining. A distinctive base metal trace assemblage is linked to stibnite formation including multiple Sb phases such as chalcostibite, zinkenite, roshchinite, aurostibite, jamesonite and robinsonite. Secondary ion mass spectroscopy-based gold deportment data indicate that up to 90% of stage 1 gold is held as a solid solution within either arsenopyrite or arsenian pyrite. Stable isotope data yield δ34Ssulphide values of between 0 and 4.1‰ and δ18OH2O values of 5.5–10.9‰ for all stages of mineralization, suggesting a magmatic fluid influence. This is consistent with field data that suggest that mineralization is synchronous with emplacement of a sequence of concordant felsic sheets. That mineralization occurred at shallow (<6 km) depths is suggested both by the presence of stibnite and by fluid inclusion studies. Low-temperature (homogenization temperatures between 150 °C and 230 °C) H2O–NaCl fluids (<6 wt% NaCl equiv.) and coeval CO2–CH4 inclusions, observed in both phases of mineralization, indicate trapping conditions of 220–315 °C at 1–1.65 kbar. A combination of phase petrology, fluid inclusion and stable isotope data suggests deposition of gold from low-salinity, magmatic fluids, most probably released from felsic rocks similar to those emplaced into the Massawa sequence during mineralization.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Boyce, Professor Adrian
Authors: Treloar, P. J., Lawrence, D. M., Senghor, D., Boyce, A., and Harbidge, P.
College/School:College of Science and Engineering > Scottish Universities Environmental Research Centre
Journal Name:Geological Society, London, Special Publications
ISSN:0305-8719
ISSN (Online):2041-4927

University Staff: Request a correction | Enlighten Editors: Update this record