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Abstract
The usual description in basic electromagnetic theory of the linear and angular momenta of light is
centred upon the identification of Poyntingʼs vector as the linear momentum density and its cross
product with position, or azimuthal component, as the angular momentum density. This seemingly
reasonable approach brings with it peculiarities, however, in particular with regards to the
separation of angular momentum into orbital and spin contributions, which has sometimes been
regarded as contrived. In the present paper, we observe that densities are not unique, which leads
us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt
a fundamental rather than heuristic approach by first identifying appropriate symmetries of
Maxwellʼs equations and subsequently applying Noetherʼs theorem to obtain associated
conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in
which the relationship between linear and angular momenta is nevertheless more subtle and in
which orbital and spin contributions emerge separately and with transparent forms.

Keywords: electrodynamics, OAM, Noether

1. Introduction

The idea is now established that a beam of light can possess
well-defined angular momentum in the direction of propa-
gation [1–3] and that this can be separated into an orbital
contribution, attributable to helical phase fronts or the spatial
distribution of the light [4], and a spin contribution, attribu-
table to circular polarisation or the vectorial character of the
electromagnetic field [5]. The explicit description in basic
electromagnetic theory4 of the angular momentum of light

and in particular its separation into orbital and spin con-
tributions remains somewhat poorly understood, however.

One usually starts by identifying Poyntingʼs vector [7]

g E B 1( )= ´

as the linear momentum density and

j r E B 2( ) ( )= ´ ´

as the angular momentum density, j being the cross product
of position r with g. The z component jz of j can thus be
thought of as the f or azimuthal component of g as we shall
elucidate in what follows. These identifications are justified
in that g and j, when integrated over all space5, yield the total
linear and angular momenta, which are the generators of
translations in space and rotations [6]. Moreover, g and j
appear in continuity equations derivable from Maxwellʼs
equations that embody the conservation of linear and angular
momenta [6, 7]. With the use of an integration by parts, the
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4 In the present paper, we consider light that is propagating freely within the
classical domain. Thus, the electric and magnetic fields E and B which
comprise the light obey Maxwellʼs equations as written in the strict absence
of charge [6]. We work in a system of units in which the electric and
magnetic constants 0 and 0m are equal to unity.

5 We assume where relevant that the light falls off suitably as r .∣ ∣  ¥
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total angular momentum can be separated into orbital and spin
contributions, which are themselves separately conserved
[8–10].

This approach seems reasonable but nevertheless brings
with it peculiarities. For a single circularly polarized plane
wave propagating in the z direction [11]

j 0, 3z ( )=

suggesting that the wave possesses no spin in the direction of
propagation, in apparent conflict with intuition [5] and indeed,
experimental observation [12]. It can be argued that a single
plane wave is unphysical, as it is of infinite extent. Yet
curious results are also encountered when j is calculated for
beams of light of finite spatial extent [4, 13, 14] and it is clear,
in fact, that j will never describe spin in a transparent manner,
as j depends explicitly upon r whereas spin must be
independent of the location of the origin. The orbital and
spin contributions to the total angular momentum do exhibit
transparent forms, but are often regarded as being not
separately meaningful as their associated operators do not
separately obey the usual angular momentum commutation
relations [15, 16].

These peculiarities do not amount to any fundamental
difficulties: careful treatments of light-matter interactions
predict angular momentum transfers that do indeed match
those observed in experiment [11, 13, 17] and the orbital and
spin contributions to the total angular momentum do indeed
generate separately valid rotations, of the spatial distribution
of the light [18] and of the orientations of the field vectors
[15, 16, 18]. Nevertheless, the form taken by j remains
puzzling and the separation of the total angular momentum
into orbital and spin contributions has sometimes been
regarded as contrived. One can ask, moreover, about the local
and not just global separation of angular momentum into
orbital and spin contributions.

The present paper was motivated by a desire to better
understand these issues. We begin with the observations that
(i) densities and indeed flux densities are not unique in
yielding total quantities when integrated (ii) the approach
outlined above, while being familiar and having its basis in
Maxwellʼs equations, is nevertheless heuristic. These lead us
to ask whether the usual description, centred upon g and j, is,
in fact, the most natural choice. Here, we recognize that
quantities such as linear and angular momenta are important,
principally, because they are conserved and recall that con-
servation laws are themselves reflections of symmetries, an
idea embodied by Noetherʼs theorem [19, 20]. Hence, a
fundamental rather than heuristic approach consists of first
identifying appropriate symmetries of Maxwellʼs equations
and subsequently applying Noetherʼs theorem to obtain
associated conservation laws, whatever the forms of the latter
turn out to be. We adopt this approach in what follows and in
doing so, do not arrive at the usual description. Rather, an
equally acceptable one in which the relationship between
linear and angular momenta is nevertheless more subtle than
that embodied by j r g= ´ and in which orbital and spin
contributions emerge separately and with transparent forms.

The remainder of the paper can be summarized as fol-
lows and is depicted in figure 1. In section 2, we introduce
necessary formalism. In section 3, we recapitulate Noetherʼs
theorem. In section 4, we consider translational symmetry in
space, which is traditionally associated with the conservation
of linear momentum. We obtain an unfamiliar but acceptable
continuity equation that contains information absent from the
usual one centred upon g: its azimuthal component is a
continuity equation for the z component of orbital angular
momentum, with no spin; a surprising but justifiable result.
Noetherʼs theorem thus yields, naturally, the idea that orbital
angular momentum is an entity unto itself and by extension
that the separation of angular momentum into orbital and spin
contributions is meaningful. In section 5, we confirm the
separation through explicit consideration of the appropriate
rotational symmetries. Rotating the spatial distribution of the
light without rotating the orientations of the field vectors, we
obtain once more a continuity equation for orbital angular
momentum. Rotating the orientations of the field vectors
without rotating the spatial distribution of the light, we obtain
a transparent continuity equation for spin. Combining these
yields a complete (geometric) rotation, of course, from which
we obtain a continuity equation for the complete (orbital and
spin) angular momentum, with separately apparent orbital and
spin contributions. In section 6, we reflect upon our findings
and identify possible directions for future research.

2. Formalism

In what follows, we continue to work in a flat spacetime
described primarily by a right-handed Cartesian coordinate
system with time t and spatial coordinates x, y and z. Where
appropriate, we express our results using the language of
tensor calculus [21], however, which allows us to consider
them also in a related cylindrical coordinate system with time
t and spatial coordinates ρ, f and z so as to better understand
them. We use unprimed indices t x y z, ,... , , ,{ }a b Î and
a b x y z, ,... , ,{ }Î for the Cartesian coordinate system and
primed indices t z, ,... , , ,{ }a b r f¢ ¢ Î for the cylindrical
coordinate system. Thus, we have the Cartesian position four
vector x t x y z, , ,( )=a and the cylindrical position four
vector x t z, , , .( )r f=a¢ We employ the metric
g diag 1, 1, 1, 1( )= -ab and the Einstein summation con-
vention throughout [21].

The electric and magnetic fields E and B are governed by
Maxwellʼs equations [6]

E B E
B E B

0, ,
0, , 4

t

t

·
· ( )

 
 

= ´ = ¶
= ´ = -¶

and can be defined consistently in terms of a scalar potential
Φ and a magnetic vector potential A as well as a pseudoscalar
potential Θ and an electric pseudovector potential C as
[22, 23]

E A B A
B C E C

, ,
, . 5

t

t ( )
 
 

=- F - ¶ = ´
=- Q - ¶ = - ´
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These (4) and (5) can be expressed succinctly as

F

G

0,

0 6

;

; ( )

=

=
b

ab

b
ab

and

F A A

G C C

,

, 7

; ;

; ; ( )
= -
= -

ab b a a b

ab b a a b

Figure 1. Noetherʼs theorem associates symmetries with conservation laws [19, 20] and affords us a means by which to study the linear and
angular momenta of light, as well as the separation of the latter into orbital and spin contributions, from a fundamental rather than heuristic
perspective. In the present paper, we consider four subtly related symmetries of Maxwellʼs equations and their associated conservation laws,
as depicted.
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with A A A A, , ,x y z( )= Fa a magnetic potential four vector,
C C C C, , ,x y z( )= Qa an electric potential four pseudovector,
Fab the field tensor, Gab the dual field pseudotensor and a
semicolon indicating covariant differentiation6. In matrix
form

F

E E E

E B B

E B B

E B B

G

B B B

B E E

B E E

B E E

0

0

0

0

,

0

0

0

0

. 8

x y z

x z y

y z x

z y x

x y z

x z y

y z x

z y x

( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

=
- -
- -
- -

=
- -
- -
- -

ab

ab

Note that Gab is obtained from Fab by the transformation
E E B =

~
and B B E = - or, equivalently,

G F 2,=ab abgd
gd with  abgd the Levi-Civita pseudotensor

defined such that 1txyz = [21].

3. Noetherʼs theorem

In her well known (first) theorem, Noether established that
continuous symmetries inherent to the equations of motion
governing a system are associated with conservation laws
which the system respects [19, 20]. In electrodynamics in the
presence of charge, there exist at least ten continuous sym-
metries which reflect the homogeneity and isotropy of
spacetime. These are invariance under translations in time,
translations in the three spatial directions, rotations about the
three spatial axes and boosts in the three spatial directions.
The conservation laws traditionally associated with these
symmetries through Noetherʼs theorem pertain to energy, the
three components of linear momentum, the three components
of angular momentum and the three components of boost
angular momentum [24, 25]. In addition, the symmetry that is
gauge invariance is usually associated with the conservation
of charge [26]. There exist other symmetries such as invar-
iance under time and parity reversals [6]. Being discrete rather
than continuous, such symmetry transformations cannot
obviously be brought into an infinitesimal form so as to be
investigated using Noetherʼs theorem, however. In the strict
absence of charge, as we are considering in the present paper,
the situation is richer in that there exists an infinite number of
continuous symmetries and associated conservation laws of
distinct character [27, 28], in addition to those discussed
above. These are seemingly unique to freely propagating
light. We shall meet some of them in section 5.

Various formulations of Noetherʼs theorem are possible.
Here, we employ one based upon the electric-magnetic

Lagrangian density

A A A A

C C C C

1

8
1

8
9

; ;
; ;

; ;
; ;

( )

( )

( )

( ) ( )

 =- - -

- - -

b a a b
b a a b

b a a b
b a a b

considered in [28, 29]. Applying Hamiltonʼs principle to the
action associated with  while varying the potentials Aa and
Ca independently and subsequently restricting our attention to
solutions for whichC C A A 2,; ;

; ;( )- = -b a a b abgd
d g g d we

obtain the complete set of Maxwell equations (6) [28].
Imagine now actively transforming Aa and Ca as

A A A A

C C C C

,

, 10( )
d

d

 = +

 = +

~

~
a a a a

a a a a

with the infinitesimal four vector Ad a and infinitesimal four
pseudovector Cd a satisfying

C C A A
1

2
. 11; ;

; ;( ) ( )d d d d- = -b a a b abgd
d g g d

This (10) produces a corresponding transformation

F F F F

G G G G 12( )
d

d

 = +

 = +

~

~
ab ab ab ab

ab ab ab ab

of the field and is a symmetry, as the transformed field also
satisfies Maxwellʼs equations:

F

G

0,

0. 13

;

; ( )

=

=

~

~

ab
b

ab
b

It can be shown using elementary calculus that (10) produces
a change d in  of the form

A
A

C
C

A
A

C
C

F A G C
1

2
, 14

;
;

;
;

; ; ;

;
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥


 

 

d d d

d d

d d

=
¶

¶
+

¶
¶

=
¶

¶
+

¶
¶

= +

a b
a b

a b
a b

a b
a

a b
a

b

ab
a

ab
a

b

which vanishes because our transformation corresponds to a
symmetry. Hence, we are led to the continuity equation

F A G C
1

2
0, 15

;
( ) ( )

⎡
⎣⎢

⎤
⎦⎥d d+ =ab

a
ab

a
b

which is the form of Noetherʼs theorem that we shall employ
in what follows.

For a given symmetry, defined by the transformation (12)
of the field, there remains freedom regarding the choice of the
underlying transformation (10) of the potentials. Imposition
now of the conditions A C A C 0t t · · = = = = so
that A A= ^ and C C ,= ^ together with the choice of Ad a and
Cd a such that there is no gauge transformation present in (10),
allows us, however, to extract from Noetherʼs theorem (15) a
manifestly gauge-invariant continuity equation that embodies
the very core of the symmetry. This procedure is to be
understood in what follows. To be clear then, A and C are to

6 Of course, covariant differentiation happens to reduce in Cartesian
coordinates to ordinary partial differentiation [21].

4

J. Opt. 17 (2015) 125610 R P Cameron et al



be interpreted from here onwards as the gauge-invariant parts
Â and Ĉ of the potentials and our final results, given
emphatically in terms of Â and C ,^ are independent of gauge.

It is essential, for what follows, to appreciate that neither
the locally conserved quantities associated with any given
symmetry, nor the fluxes of these, are unique. Poyntingʼs
vector, for example, is not the unique momentum density
associated with translational symmetry, but rather a con-
venient choice. We note, moreover, that this freedom in
choosing local densities is a general phenomenon, a further
example of which is the electromagnetic force density acting
on a dielectric with polarisation field P. There are two rival
forms for this force [30]:

f P E P B

f P E P B

,

. 16

c
t

d
t

( · )
( · ) ( )



=- + ¶ ´
= + ¶ ´

The former arises from treating the medium as a collection of
bound charges and the latter from considering it to be formed
from point dipoles. Either form may be used as the total force
calculated from either is the same [30]. The difference is
simply an illustration of the freedom in choosing the densities
of mechanical properties for the electromagnetic field.

4. Translations and the conservation of linear
momentum and orbital angular momentum

Let us begin now as depicted in the left-most branch of
figure 1 by considering an infinitesimal translation of the light
in spacetime. We take

F F F K F 17; ( ) = -~ab ab ab g ab
g

with K K K K, , ,x y z( )=a a four vector and the constants ,
Kx, Ky and Kz infinitesimal7. It follows immediately8 from
Noetherʼs theorem (15) that

K T 0 18; ( )=a
a
b
b

with9

T F A G C
1

2
. 19; ;( ) ( )= +a

b bg
g a

bg
g a

As , Kx, Ky and Kz are independent and essentially arbitrary,
we deduce from (18) that

T 0, 20; ( )=a
b
b

which may be identified as a continuity equation for energy
( ta = ) and the x y z, , components of linear momentum
( x y z, ,a = ) owing to the nature of the symmetry transfor-
mation (17), with Tab an energy-momentum tensor
accordingly.

Somewhat suprisingly, Tab is not the form

W F F G G W
1

2
0 21;( ) ( ) ( )= + =a

b bg
ag

bg
ag a

b
b

traditionally recognized for the energy-momentum tensor. In
particular, the components

T g A E C B
1

2
22a

t
a b a b a b( ) ( )= + ¶ +

differ from those ga of Poyntingʼs vector g by a total spatial
divergence, as indicated. At this stage, Tab is usually rejected:
in addition to its unfamiliarity, Tab is neither symmetric
(T T¹ab ba) nor traceless (T 0¹a

a ) and it is claimed that the
absence of these characteristics jeopardises the conservation
of angular momentum, boost angular momentum and boost
helicity [6, 31]. Various ad hoc procedures have been
conceived of to yield the traditionally recognized energy-
momentum tensor Wa

b rather than Tab when considering
translational symmetry and applying Noetherʼs theorem, the
simplest of which is to add W T-a

b
a
b to Tab [6, 24, 31–33].

We recognize in spite of the above that the Tat are
acceptable as the components of a linear momentum density:
although unfamiliar, they yield the components of the total
linear momentum when integrated over all space just as the ga
do and neither is to be preferred in this context. Moreover, the
claim [6, 31] that the characteristics of an energy-momentum
tensor influence the conservation of angular momentum,
boost angular momentum and boost helicity is unjustified, as
we shall demonstrate in section 5. Rather than attempting to
fix Noetherʼs theorem, let us therefore attempt instead to
understand the result that it has yielded. To this end, we now
take advantage of the tensorial character of (20) and examine

(20) in the cylindrical coordinate system x .a¢ Considering the
azimuthal component and making use of the tensor transfor-

mation law relating xa
¢
to x ,a we find that

T
x

x
T

l o
0 23

t z a za

; ;

( )

=
¶
¶

= ¶ + ¶
=

f
a

a

a

f a
b
b

¢
¢

which is a continuity equation not for linear momentum but
rather for the z component of orbital angular momentum, with

E A B Cl r r
1

2
24a a a a[ ]( ) ( ) ( ) = ´ + ´

an orbital angular momentum density [18] and

o E r C B r A

A B C E

1

2
25

ab acd bef e c d f e c d f

a b a b

( )
] ( )

⎡⎣ = ¶ - ¶

+ -

the components of an orbital angular momentum flux density
[34], abc being the Levi-Civita rotational pseudotensor
defined such that 1xyz = [21]. We can understand this in
turn by noting that

K K K
K

K K
z K

, , ,
, 26

t

z

ˆ · ˆ ·
ˆ · ( )
 r f r= = =

=

r f

7 Note that K 0.; =a
b

8 With A K A ;d = -a
b

a b and C K C .;d = -a
b

a b
9 The reader may recognize that Tab resembles the gauge-invariant piece of
the ‘canonical’ energy-momentum tensor obtainable from the standard rather
than electric-magnetic Lagrangian density while being distinct from it: see
[6, 21, 31], for example. The precise form taken by Tab evidently differs for
different choices of Lagrangian density; another manifestation of non-
uniqueness [32]. The ideas introduced in the present paper hold regardless of
such choices, however.
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with ,r̂ f̂ and ẑ unit vectors in the directions of increasing ρ, f
and z. The extraction of (23) from (18) thus follows from an
effective choice of 0 = and K f̂r df= at the given t, ρ, f
and z, with df an infinitesimal angle. As depicted in figure 2,
the translation so defined coincides with a rotation of the
spatial distribution of the light about the z axis through ,df
with no rotation of the orientations of the field vectors. Hence
the emergence of a continuity equation (23) for the z
component of orbital angular momentum, with no spin. Thus,
we see now that it is unreasonable to expect Noetherʼs theorem
to yield a continuity equation centred upon g in connection
with translations in space: as the azimuthal component jz of g
describes orbital angular momentum and spin, albeit obscurely,
this would be tantamount to obtaining information about spin
without rotating the orientations of the field vectors!

In summary, the continuity equation yielded by Noe-
therʼs theorem in connection with translations in space,
although unfamiliar, is nevertheless acceptable and in fact
contains information absent from the usual one centred upon
g: Noetherʼs theorem yields, naturally, the idea that orbital
angular momentum is an entity unto itself and by extension
that the separation of angular momentum into orbital and spin
contributions is meaningful. This is obscured by the use of
Cartesian coordinates but emerges in cylindrical coordinates.

5. Rotations and the conservation of orbital angular
momentum and spin

We now confirm the separation of angular momentum into
orbital and spin contributions through explicit consideration

of the appropriate rotational symmetries in the Cartesian
coordinate system x .a

First, we proceed as depicted in the middle-left branch of
figure 1 and consider an infinitesimal rotation of the spatial
distribution of the light without rotating the orientations of the
field vectors10, taking [18]

E E E r E

B B B r B

,

, 27

[ · ( ) ]
[ · ( ) ] ( )
q 
q 

 = - ´

 = - ´

~ ^

^

with the components of q infinitesimal and constant.
Employing Noetherʼs theorem (15) and making some simple
manipulations11 to the result that follows, we associate (27)
with

l o 0, 28t a b ab ( )¶ + ¶ =

which is a continuity equation for orbital angular momentum
[34], the z component of which coincides with (23). When
integrated over all space, (28) yields the global conservation
of orbital angular momentum obtained in [15, 16, 28].

Second, we proceed as depicted in the middle-right
branch of figure 1 and consider an infinitesimal rotation of the
orientations of the field vectors without rotating the spatial
distribution of the light, taking [15, 16, 18]

E E E E

B B B B

,

. 29

( )
( ) ( )
q
q

 = + ´

 = + ´

~ ^

^

Again employing (15) and making some simple manipula-
tions to the result that follows, we associate (29) with

s n 0, 30t a b ab ( )¶ + ¶ =

which is a transparent continuity equation for spin [27], with

s E A B C
1

2
31( ) ( )= ´ + ´

a spin density and

n

A B A B C E C E

A B C E
1

2
32

ab ab

a b b a a b b a

[ ( · · )

] ( )

d= -

- - + +

the components of a spin flux density. When integrated over
all space, (30) yields the global conservation of spin obtained
in [15, 16, 27, 28].

Finally, we proceed as depicted in the right-most branch
of figure 1 by considering an infinitesimal complete (geo-
metric) rotation of the light, taking [18]

E E E E r E

B B B B r B

,

, 33

· ( )
· ( ) ( )

q q 
q q 

 = + ´ - ´

 = + ´ - ´

~



which is of course the combination of (27) and (29).
Employing (15) once more, we associate (33) with

l s o n 0, 34t a a b ab ab( ) ( ) ( )¶ + + ¶ + =

Figure 2. For any given t, ρ, f and z, an infinitesimal translation of
the light in space through K f̂r df= (parallel to the purple line)
coincides with an infinitesimal rotation of the spatial distribution of
the light about the z axis through df (indicated by the light green
curve), with no rotation of the orientations of the field vectors.

10 Strictly speaking, we consider the closest permissible approximation to
this rotation [18].
11 The need to perform these is attributable to the solenoidal character of E
and B. Superficially, the ^ symbol in (27).
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which is a continuity equation for the complete (orbital and
spin) angular momentum, centred not upon the usual angular
momentum density j but rather an equally acceptable angular
momentum density l s+ in which orbital and spin contribu-
tions are nevertheless separately apparent. For a single
circularly polarized plane wave of angular frequency ω

propagating in the z+ direction, we find that

l
s

T

0,

, 35

z

z
tt

( )

w

=

=


with an overbar indicating a cycle average and where the plus
and minus signs refer to left- and right-handed circular
polarisation in the optics convention. These seemingly natural
[5, 12] results (35) suggest a spin of ẑ ‘per photon’ and
should be compared with that seen in (3). For a single linearly
polarized Bessel beam of angular frequency ω and winding
number ℓ propagating in the z+ direction, we find that

l

T

ℓ

s

,

0, 36

z
tt

z ( )



w
=

=

suggesting an orbital angular momentum of ℓ ẑ ‘per photon’,
which again seems natural [4].

We did not consider Tab in arriving at (34). Evidently
then, the conservation of angular momentum does not rely
upon the characteristics of an energy-momentum tensor.
Analogous observations hold for the conservation of boost
angular momentum and boost helicity. The fact that j is the
cross product of position r with Poyntingʼs vector g is not
indicative of a general relationship between linear and angular
momentum: clearly, l s+ is not the cross product of r with
the T ,a

t as l s yT zTx x z
t

y
t+ ¹ - and similarly for the y and z

components. This role is reserved instead for orbital angular
momentum, with no spin, as we saw in section 4.

Note that the separate orbital and spin contributions
obtained as above do not correspond with the so-called
‘orbital’ and ‘spin’ tensors identified heuristically elsewhere
[32, 33]: the latter each have suggestive forms but never-
theless are not separately associated with symmetry trans-
formations and do not separately obey continuity equations.
Let us emphasize here once more that our final results,
expressed emphatically in terms of A A= ^ and C C ,= ^

embody the very cores of our symmetries and are independent
of gauge.

6. Discussion

We have approached the linear and angular momentum of
light, as well as the separation of the latter into orbital and
spin contributions, from a fundamental rather than heuristic
perspective by first identifying symmetries of Maxwellʼs
equations and subsequently applying Noetherʼs theorem to
obtain associated conservation laws. We did not arrive at the
usual description, centred upon the identification of Poynt-
ingʼs vector g as a linear momentum density and its cross
product j with position r as an angular momentum density.

Rather, an equally acceptable and perhaps preferable one in
which the relationship between linear and angular momentum
is nevertheless more subtle than that embodied by j r g= ´
and in which orbital and spin contributions emerge separately
and with transparent forms.

That a given symmetry can be associated with different
conservation laws through the use of different coordinate
systems appears worthy of further study. It would also be
interesting to see how our present findings generalize to the
consideration of curved spacetimes, particularly as the energy
momentum tensor Wa

b is given a seemingly privileged status
by Einsteinʼs theory of gravitation [21, 32, 35]. We shall
return to these ideas elsewhere.
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