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Abstract. Inference of circadian regulatory network models is highly
challenging due to the number of biological species and non-linear in-
teractions. In addition, statistical methods that require the numerical
integration of the data model are computationally expensive.

Using state-of-the-art adaptive gradient matching methods which model
the data with Gaussian processes, we address these issues through two
novel steps. First, we exploit the fact that, when considering gradients,
the interacting biological species can be decoupled into sub-models which
contain fewer parameters and are individually quicker to run. Second, we
substantially reduce the complexity of the network by introducing time
delays to simplify the modelling of the intermediate protein dynamics.

A Metropolis-Hastings scheme is used to draw samples from the posterior
distribution in a Bayesian framework. Using a recent delay differential
equation model describing circadian regulation affecting physiology in
the mouse liver, we investigate the extent to which deviance informa-
tion criterion can distinguish between under-specified, correct and over-
specified models.

Keywords: Bayesian Inference, Gaussian Processes, Adaptive Gradient
Matching, Circadian Regulation, Delay Differential Equations

1 Introduction

1.1 Biological Background/Motivation

The circadian clock is a molecular mechanism, involving interlocked, transcrip-
tional feedback loops, that synchronises biological processes with the day/night
cycle and is found in many organisms, see [19]. Mathematical models are being
developed to describe the dynamics of the clock transcriptional network and its
downstream regulation, for Arabidopsis, see [11], [12], and for the mouse liver
and adrenal gland, see [8], [9]. The field is now sufficiently mature for us to
consider validating, comparing and extending these models in the presence of
experimental data.
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1.2 Network inference

Statistical pathway inference techniques aim to make inference in a network
where the vertices are molecular components such as genes or gene products and
the edges represent regulatory interactions between these components. Statistical
models for exploring large spaces are typically linear for reasons of speed but
come at the cost of over-simplifying the non-linear features of the network. When
the network is known, differential equations (DEs) are widely used to model
biochemical dynamics and capture a wealth of detail about the the network.
Fitting approaches which directly solve the DEs, see [17], are currently infeasible
for large systems especially when model comparison is required. Hence, recent
work, to select between network models focuses on an intermediate approach,
incorporating prior knowledge about the structure of biochemical DE models
into an inference framework, see [10].

Differential equation models are used extensively in science and engineering.
A common requirement is to estimate model parameters by fitting them to ob-
served data collected over time. This involves repeatedly finding a solution to
the DEs which, because these systems are typically non-linear, involves numer-
ical approximation. Numerical integration is computationally expensive, in all
but the simplest cases, and hence, there is much interest in methods that avoid
this step. One alternative approach focuses on gradient matching with Gaussian
Processes (GPs). This is currently a very active area (e.g. [2], [4], [18], [7]).

Gradient matching uses an alternative model of the data, an interpolant, and
matches the derivative of this interpolant with the DE outputs, thus avoiding
explicit numerical integration, see [13]. GPs are a natural choice for the alter-
native data model, and in particular they admit exact derivative expressions. A
GP may be fitted to the data and the DE parameters found by matching the
GP derivative, for which there is an analytical expression, to the DE derivative.
However the accuracy of the original method proposed in [2], was limited by the
lack of regularisation from the DE parameter inference to the GP inference. In
work by [4], all parameters are consistently inferred in the context of the whole
model, rather than in a piecewise heuristic manner. This introduces, in effect, a
coupling mechanism between the Gradient Process and the DEs which enhances
the learning of the parameters associated with the DEs.

Here, we contribute to this field by developing novel methodological advances
and illustrating them on a core clock model for mouse liver and adrenal gland
developed by [9]. This model comprises five clock genes and is based on expres-
sion and experimentally verified circadian cis-regulatory sites, see figure 1. The
intermediate protein dynamics are modelled using time delays, vastly simplifying
the network complexity. The expression of each clock gene is described by a delay
differential equation with a production term that depends on the concentrations
of core clock regulatory components and a decay term. The adaptive gradient
matching (AGM) statistical model developed in [4] is our framework for Bayesian
inference. We introduce modularisation by exploiting the fact that when gradi-
ent matching, the system reduces to five equations, one for each species, which
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are no longer coupled (as the right-hand side does not require any of the other
left-hand side values).

A Metropolis-Hastings scheme is devised to sample from the posterior prob-
ability densities for the model parameters (including the parameters for the DEs
and the hyper-parameters for the GPs).

We generate data from the full model (M0), see [9], using the parameters
described by the authors. The aim of this work is to investigate whether devia-
tion information criterion (DIC) which considers both the measure of fit and the
measure of complexity based on the posterior samples, can distinguish between
under-specified, correct and over-specified models for a range of alternative hy-
pothesis.
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Fig. 1. Regulatory network Model M0 (middle) containing five core clock genes (boxes).
Direction of activation (bold black line) or inhibition (regular red line) is indicated by
the (arrowhead). Regulatory network Model Mr with reduced number of edges (left).
Regulatory network Model Ma with added number of edges (right).

2 Methods

We describe here our approach to Bayesian model fitting and selection for sys-
tems of differential equations (ordinary and time delay) using adaptive gradient
matching with a Gaussian process.

2.1 Reaction Graph

Consider a regulatory network of genes which may activate or inhibit transcrip-
tion directly or indirectly. This network can be considered as a reaction graph
where the nodes are the molecular components such as genes or gene prod-
ucts and the edges are the regulatory interactions between these components.
Changes over time in the gene and gene product states can be modelled using
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differential equations. To simplify the modelling of the intermediate protein dy-
namics we introduce time-delayed variables. This reduces the network to gene
transcripts and is convenient for parameter estimation and model selection since
this data is more readily available than protein data. Proteins are sometimes
treated as missing data and modelled using latent variables; employing time-
delayed variables is an alternative approach [8].

Consider a set of T arbitrary time points t1 < . . . < tT and K gene tran-
scription states. We define xk ≡ xk(t) ≡ [xk(t1), xk(t2), . . . , xk(tT )]

⊤
as the

transcription state sequence for the kth state.

2.2 The Dynamical Model

Let K denote the number of genes in the network and i, where i = 1 . . .Nk,
the associated set of Nk regulatory genes. The time series for the kth gene
transcription state is represented by a set of K differential equations of the form

ẋk (t) ≡
dxk(t)

dt
= fk(xk(t),xi (t) , θ).

Here θ = {θ1 . . .θK} is our general notation for the parameters of the differential
equations. Specifically, we have

fk (xk (t) ,xi (t) , θk) =
∏

i=1...Nk

(

1 + avixi (tτi) /ai
1 + xi (tτi) /ai

)pi

− dkxk (t) . (1)

In this notation, pi is the number of clock-controlled elements and (1/ai)
pi rep-

resents the basal production rate of species i. When species i is an activator,
avi scales the activation and when species i is a repressor, avi = 0. We use tτi
to indicate the value t− τi, thus accounting for the delay including translation,
post-translational modifications, complex formation and nuclear translocation.
The parameter dk is the degradation rate of species k.

2.3 The Observation Model

Let yk(t) = xk(t) + ǫ(t) be noisy observations of this process, where ǫ(t) is
assumed to have a zero-mean Gaussian distribution with variance σ2

k for each of
the model states. Assuming independence over the observation times, we have
an observation model

p(yk|xk) =
∏

t

p(yk(t)|xk(t), σ
2
k) =

∏

t

N (xk(t), σ
2
kI). (2)

Here N (xk(t), σ
2
kI) denotes the probability density function for a Gaussian ran-

dom variable with mean xk(t) and variance σ2
kI.
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2.4 Adaptive Gradient Matching

Instead of obtaining xk by solving the dynamical system, recent gradient match-
ing approaches in [2] and [4], put a GP prior on xk and match the GP derivatives
with the derivatives arising from the differential equations. This approach leads
naturally to a decoupling of xk and a reduction in complexity for parameter
estimation.

2.5 Gaussian Process Modelling

A Gaussian Process (GP) is a stochastic process governing the properties of a
function. A GP is defined by a mean and correlation function called a kernel.
In this work we use the most commonly used kernel, the ”squared-exponential”
kernel. With a GP prior on xk, p(xk|φk) = N(xk|µk,Cφk

) where µk is the
data mean, Cφk

is the correlation function and φk are the hyper-parameters of
the GP. The derivative of a GP is also a GP and the conditional distribution
for the state derivatives is N (mk,Ak) where mk = ′Cφk

Cφk
(xk − µk) and

Ak = C′′
φk

− ′Cφk
C−1

φk
C′

φk
, respectively, see [15]. Here, the matrix C′′

φk
denotes

the auto-covariance for each state derivative, and the matrices C′
φk

and ′Cφk

denote the cross-variances between the kth state and its derivative. For further
details concerning the derivation and analytical form of these expressions, see
[4].

2.6 Statistical Model

Bayes’ theorem links what we would like to know, the posterior probability distri-
butions for the unknown parameters, to the likelihood of seeing the observations
given the model and its parameters and the prior information about the param-
eters. Following [4] we propose the following adaptive gradient matching (AGM)
model over states xk, their derivatives ẋk, observations yk and parameters as-
sociated with the DE, θk, with the observational noise, σ2

k, and with the GP,
φk,

p(yk,xk, θk, φk, γ
2
k, σ

2
k) = p(yk|xk, σ

2
k)p(xk|θk, φk, γ

2
k)p(θk, φk, γ

2
k, σ

2
k). (3)

The term p(xk|θk, φk, γ
2
k) combines the DE gradient with the GP gradient in a

compatability function and arises from a products of experts approach described
in [4]

p(xk|θk, φk, γ
2
k) ∝

exp[−1/2(fk −mk)
⊤(Ak + γ2

kI)
−1(fk −mk)]

(2π)n/2|Ak + γ2
kI|

1/2
. (4)

The function fk is defined in equation (1), Ak and mk are defined in section 2.5,
n is the number of time points (also equal to the number of rows in Ak), γk is
the slack parameter controlling the coupling of GP and DE, and I is the identity
matrix.
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2.7 Sampling

We use a Metropolis-Hastings scheme to draw samples from the posterior dis-
tribution. Denoting q1(Θk) and q2(xk), where Θk =

{

θk, φk, γ
2
k, σ

2
k

}

, as the
proposal distributions for the parameters, Θk, and the states, xk, the proposal
moves are accepted or rejected according to the standard Metropolis-Hastings
criteria

Paccept = min

{

1,
π(yk,x

′
k,Θ

′
k)

π(yk,xk,Θk)

}

(5)

where π =
p(yk,xk,θk,φk,γ

2

k
,σ2

k
)

q1(Θk)q2(xk)
and the numerator is defined in equation (3).

The parameters Θk are proposed simultaneously from a multivariate Gaus-
sian using the efficient adaptive MCMC algorithm described by [5], adapted
for our non standard posterior distribution. The priors for all parameters are
informed gamma priors. Here, xk and φk are initialised using a GP regression
fit with maximum likelihood to the data yk, see [14]. The proposal function
for xk is N (µx|y,Σx|y), dropping the subscript k for convenience, and where

µx|y = (C−1
φ + (σ2I)−1)−1(σ2I)−1y, Σx|y = (C−1

φ + (σ2I)−1)−1.

2.8 Model Selection using Deviance Information Criterion

For competing parametric statistical models, the deviance information criterion
(DIC), as described in [16], considers both the measure of fit and the measure
of complexity. The deviance (associated with the observed likelihood p (y|θ) is
defined by

D (θ) = −2 log p (y|θ) + 2 log h (y) ,

where h(y) depends only on the data. The model complexity or effective dimen-
sion, pD, is defined as

pD = D̄ (θ)−D(θ̄),

and

DIC = D̄ (θ) + pD,

= 2D̄ (θ)−D(θ̄)

where D̄ (θ) is the expected value of D (θ) and θ̄ is the expected value of θ. For
model comparison, we set h(y) = 1 for all models so that D (θ) = −2 log p(y|θ).
For D(θ) available in closed form, D̄ (θ) can be approximated from the MCMC
run by taking the sample mean of the simulated values of D(θ).

In our case, as y is conditioned on θ and X = x1, . . . ,xk, we use the complete
DIC suggested in [3]

DIC (y,X) = −4E [log p (y,X|θ) |y,X] + 2 log p (y,X|E [θ|y,X]) .



Inference of Circadian Regulatory Pathways 7

The intuitive idea is that models with a smaller DIC score are preferred to
models with a larger DIC score. Models are penalised by the value of D̄ but
also (in common with other information criteria) by the effective number of
parameters pD. Since D̄ will decrease as the number of parameters in a model
increases, the pD term compensates for this effect by favouring models with a
smaller number of parameters.

An advantage of DIC, over other criteria such as Bayes factors, is that DIC
is easily calculated from the samples generated by a Markov chain Monte Carlo
simulation.

3 Results

3.1 Mouse Liver Model

The model selection framework is applied to the five component clock model
for mouse liver and adrenal gland developed in [9]. Data is generated from this
delay differential equation model using numerical integration over an interval of
24 hours with the published parameter set. Clean data were then sampled in 2
hour intervals and corrupted with additive Gaussian noise which corresponds to
a signal-to-noise ratio of 10, see figure 2. In this experiment, we fit a GP to each
of the five time series in order to provide an initial estimate for the GP hyper-
parameters, φk = {lk, sfk}. Here lk is the length scale parameter and sfk is the
vertical scale parameter. The GP fitting, illustrated in figure 2, also provides an
initial estimate for σ2

k.
The AGM framework combined with the Metropolis-Hastings scheme, out-

lined in section 2.7, is used to obtain posterior samples for the parameters of the
statistical model comprising DE parameters θk = {api, avi, dk, τi}, see equation
(1) for more details, GP parameters, φk, the noise parameter σ2

k and the slack
parameter, γ2

k, associated with the AGM framework, see equation (4). In total,
for five network species (Bmal1, Rev-erba, Per2, Cry1 and Dbp), see figure 2,
there are 54 parameters to be learnt. Note that pi, the number of clock controlled
elements in the xk regulatory region, are taken as given and not inferred in these
experiments. Details of the priors used for each parameter type are given in sec-
tion 2.7. Two MCMC chains were run for 2×106 iterations and convergence was
monitored using the potential scale reduction factor (PSRF) discussed in [1].

3.2 Model Selection Experiment

To illustrate these new tools in the context of model selection, we propose two
alternative models Mr (one edge per species is removed) and Ma (one edge per
species is added up to a maximum of five edges) to the true model, M0, and
then apply the inference framework to each model using the dataset described
above. The specific details as to which edges were removed, added or changed
are described in table 1. The DIC score for each model was estimated using
10,000 posterior samples taken from the end of the MCMC chains. Each entry
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in the table required approximately 2 hours of CPU time on a HPC cluster.
Models with a smaller DIC are preferred to models with a larger DIC. For
comparison between models, the scores for the alternative models are adjusted
by subtracting the value arising from the fitting of the true model M0. A positive
adjusted score indicates that the true model is preferred to the alternative model
and a negative adjusted score indicates that the alternative model is preferred to
the true model. For this experiment, the DIC differences for Mr were positive for
all species (Reverba (adj DIC=0.1), Per2 (adj DIC=0.9), Cry1 (adj DIC=8.6)
and Dbp (adj DIC=21.4)) indicating that the true model is preferred to the
alternative model, Mr for all species, strongly for Cry1 and Dbp, and weakly
for Reverba and Per2. Bmal1 was not included in this experiment as it only has
one interaction in the true model. Over all 5 species, the total adjusted DIC
score is 31 suggesting that the true model is preferred to an alternative model
with edges missing as outlined for Mr, see table 1. For Ma, the DIC differences
are negative for Bmal1 but positive for Reverba, Per2, Cry1 and Dbp (adjusted
DICs -1.8, 0.6, 18.7 and 25.4 respectively), see table 1. The total adjusted DIC
score is 44.7 suggesting that the true model is preferred to the specified model
Ma.

3.3 Parameter Estimation

Comparison of the posterior densities for the model parameters between the
species, see figure 3, suggests that uncertainty increases with the number of
parameters. Generally recovery of the true value (comparison possible when
using synthetic data) is good with the distributions lying over the true value. The
occasional parameter is very different. In the case of parameter cp for Reverba,
this is explained by over-fitting to the noisy data. The method allows for further
investigation of individual differences or deviations from the true value.
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Fig. 2. Synthetic expression level time series data crosses generated for five species
over 24 hours and the initial GP fit line.

4 Conclusion

We present here new tools for model selection in gene regulatory networks, with
an emphasis on improving computational efficiency for large-scale simulations.
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Fig. 3. Posterior probability densities for model parameters shown as box plot distri-
butions. The values have been shifted so that ”0” signifies the true parameter.

Table 1. Adjusted DIC scores for the true model M0 and alternative models Mr and
Ma. The production term (listed below) summarises for each species, the direction of
the edges acting on that species. For example act1*rep3*rep4 is short-hand for the the
activation of Bmal1(1), and the repression of Per2(3) and Cry1(4) on Dbp, M0

.

Species M0 Mr Ma

Bmal1 0 n/a -1.8
Reverba 0 0.1 1.8
Per2 0 0.9 0.6
Cry1 0 8.6 18.7
Dbp 0 21.4 25.4

Total 0 31.0 44.7

Production terms M0 Mr Ma

Bmal1 (1) rep2 n/a rep1*rep4
Reverba (2) act1*rep3*act5*rep4 act1*rep3*act5 act1*rep3*act5*rep4*rep2
Per2 (3) act1*rep3*act5*rep4 act1*rep3*act5 act1*rep3*act5*rep4*rep2
Cry1 (4) act1*rep3*act5*rep2*rep4 act1*rep3*act5*rep2 act1*rep3*rep5*rep2*rep4
Dbp (5) act1*rep3*rep4 act1*rep3 act1*rep3*rep4*rep2

Model selection for complex networks is a demanding topic that is challenging
state-of-the-art methodology. There is an on-going requirement from experimen-
talists to revise models as more data becomes available and to choose between
alternative hypothesis. For example linking clock mechanics to down-stream ac-
tivities such as metabolism.

For large networks, methods requiring numerical integration are infeasible.
Here we use a state-of-the-art gradient matching approach which substantially
reduces the computational expense [2]. The relative cost of AGM to numerical
integration of the DE, in the examples considered here is conservatively ten
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times faster. This improvement makes model selection between several models a
realistic objective. Here we looked in detail at one true model and two alternative
models. Future work could accommodate many more alternatives.

In terms of model selection, we show that it is possible to distinguish between
the true model and a under- or over- specified model where the number of edges
have been reduced or added.

Future work will compare the DIC measure with other statistics for model
selection and investigate the sensitivity of model selection to factors such as the
prior information.
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