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ABSTRACT 
Online evaluation methods, such as A/B and interleaving 
experiments,  are widely used for search engine evaluation. 
Since they rely on noisy implicit user feedback, running each 
experiment takes a considerable time.  Recently, the problem 
of reducing the duration of online experiments has received 
substantial  attention  from the  research community.   How- 
ever, the possibility of using sequential statistical testing 
procedures for reducing the time required for the evaluation 
experiments  remains  less studied.   Such sequential  testing 
procedures allow an experiment to stop early, once the data 
collected is sufficient to make a conclusion. In this work, we 
study the usefulness of sequential testing procedures for both 
interleaving and A/B testing.  We propose modified versions 
of the  O’Brien  &  Fleming  and MaxSPRT  sequential  tests 
that are applicable for testing in the interleaving scenario. 
Similarly, for A/B experiments, we assess the usefulness of 
the O’Brien & Fleming test, as well as that of our proposed 
MaxSPRT-based sequential testing procedure. In our exper- 
iments on datasets containing 115 interleaving and 41 A/B 
testing experiments, we observe that considerable reductions 
in the average experiment duration can be achieved by us- 
ing our proposed tests.  In particular, for A/B experiments, 
the average experiment durations can be reduced by up to 
66% in comparison with  a single step test  procedure, and 
by up to 44% in comparison with the  O’Brien  &  Fleming 
test.   Similarly,  a marked relative  reduction  of 63% in the 
duration of the interleaving experiments can be achieved. 
Categories  and  Subject  Descriptors:  H.3.3 [Informa- 
tion Storage & Retrieval]:  Information Search & Retrieval 
Keywords: A/B experiments; interleaving; statistical test- 
ing 

 
 
 
 
 
 
 
 
1.   INTRODUCTION 

Online evaluation methods, such as A/B and interleaving 
experiments,  have proven to  be an important  tool in web 
search evaluation [3, 9, 11]. In contrast to a Cranfield-based 
evaluation method, online evaluation methods interpret the 

 

implicit feedback of the  real  users.   As  a result,  the  on- 
line evaluation methods can be applied in several scenarios 
where offline evaluation might be impractical.  Examples of 
such scenarios include cases where the large-scale labelling 
of the  document  relevance is  hard,  e.g. the  evaluation  of 
personalised ranking algorithms or the ranking of fresh con- 
tent.  Another example is the evaluation of changes in the 
search engine that do not affect search result ranking, such 
as changes in the UI, where A/B experiments can be applied. 

However, the  existing  online  methods  have some limita- 
tions.  As these methods rely on noisy implicit feedback from 
the users, each online evaluation experiment requires a con- 
siderable number of observations to be made before a reli- 
able experiment outcome can be obtained [11]. As a result, 
usually  each experiment  is  deployed on up to several  per 
cent of query stream for several days, e.g. A/B experiments 
might be deployed for a week or two on several per cent of 
queries [11]. Similarly, Chapelle et al. [3] used a dataset of in- 
terleaving experiments that span up to 5 days. Due to these 
constraints,  the  number of simultaneously  running experi- 
ments is bounded and, consequently, the throughput of the 
evaluation pipeline is limited.  Since this limits the applica- 
bility of the online experimentation methods, an important 
research problem is to improve the online experimentation 
methods, so that they reach a reliable outcome faster. 

Once the evaluated search engine modification is worse 
than the baseline system, the users who participate in the 
corresponding evaluation experiment are exposed to a some- 
what degraded search experience. On the other hand, it was 
reported  that  such online  experiments  with negative  out- 
come constitute a considerable part of all experiments [11]. 
Again, this supports the need to improve online evaluation 
so that the outcomes of experiments are obtained earlier: the 
negative changes are quickly rejected, and improvements are 
deployed as soon as possible. 

These concerns become even more important in initiatives 
such as  Living  Labs  [1], where industrial participants  are 
invited to share a part of their live traffic for use by academic 
researchers. Indeed, the ability to quickly detect and disable 
an erroneous experiment can be extremely useful in such a 
shared infrastructure. 

As we will discuss in Section 2, several approaches to re- 
duce the duration of interleaving experiments have previ- 
ously been studied.  However, the possibility to reduce the 
duration of the interleaving experiments by using sequential 
testing  procedures  remains  less  studied.   Such testing pro- 
cedures are capable of stopping the experiments early once 
the available data is sufficient to make a reliable comparison 



outcome. In this work, we aim to close this gap. We demon-
strate that by modifying two sequential testing procedures to
make them applicable for interleaving, we obtain a consider-
able improvement in the average time an experiment takes.

Similarly, to the best of our knowledge, there are no stud-
ies published that quantitatively assess the usefulness of se-
quential testing in the context of the A/B experiment-based
search evaluation. In this work, we propose a new sequential
test developed to match the distribution of one of the pop-
ular absolute online metrics, namely the abandonment rate.
Moreover, we perform an experimental study on a dataset
of A/B experiments, where we evaluate both our proposed
test and the standard O’Brien&Fleming sequential test.

Overall, the contributions of this work are two-fold:

• We propose several sequential testing methods that re-
flect the distributions of the data generated in A/B and
interleaving experiments, and describe how to adjust their
stopping thresholds based on query log data;

• We perform an extensive evaluation study of the perfor-
mance of our proposed methods using real-life datasets of
A/B and interleaving experiments.

The remainder of this paper is organised as follows. In Sec-
tion 2 we discuss the related work. In Section 3 we briefly
review how A/B test and interleaving experiments are per-
formed. In Section 4 we introduce several methods for per-
forming sequential statistical analysis. The datasets used in
our empirical study are described in Section 5. Our evalua-
tion methodology and the results we obtained are described
in Sections 6 and 7, respectively. We conclude this paper
and discuss future work in Section 8.

2. RELATED WORK
Our work is closely related to two areas of research. The

first area is concentrated on developing approaches to speed
up the existing online evaluation methods and we discuss
these approaches in Section 2.1. The sequential analysis
methods are reviewed in Section 2.2.

2.1 Improving online evaluation
The first interleaving method, Balanced Interleaving, was

proposed by Joachims [7]. The method was further devel-
oped in Team Draft Interleaving [18], Probabilistic Interleav-
ing [6], Optimised Interleaving [17], and their modifications.

A thoroughly studied approach to reduce the time re-
quired to run interleaving experiments is to reduce noise
in the user feedback and thus to improve the convergence
rate of the interleaving experiments. This can be achieved
by modifying the way the user clicks are aggregated and
the aggregated credit is assigned to the tested alternatives.
Radlinski and Craswell [16] studied approaches to weight
user clicks according to the ranks of the clicked results.
Chapelle et al. [3] considered ten different heuristic click ag-
gregation schemes. For instance, in one of the schemes the
result of each interleaved impression is represented by the
difference between clicks obtained by compared systems, di-
vided by the total number of clicks in the corresponding
impression. In another scheme, the result is binary, equal to
-1 if the baseline system received more clicks than the tested,
+1 in the opposite case, and equal to 0 if they receive equal
number of clicks. Overall, Chapelle et al. found that some of
the tested credit assignment rules improve convergence rate
of the interleaving outcomes.

A more elaborated approach to interpret click feedback
was considered by Yue et al. [24], who proposed to machine-
learn the click aggregation scheme using a feature-based rep-
resentation of the clicks. Under their proposed approach, the
combination of the features is learned to maximise the confi-
dence in the outcomes of the earlier performed experiments.

Another approach was proposed by Radlinski and Craswell
in [17]. Based on a novel interleaving framework, they stud-
ied how a sensitive interleaving method (i.e. the method that
quickly converges) can be built by means of maximising the
uncertainty of the comparison winner within a single ses-
sion. Building on their work, Kharitonov et al. [8] proposed
an approach to leverage pre-experimental data to improve
the interleaving sensitivity.

Deng et al. [4] studied an approach to improve the con-
vergence rate of A/B experiments by using pre-experimental
data. This reduction is achieved, for instance, by means of
stratification of the users into groups, such that the between-
strata variance of the observed metric is removed.

All of the above discussed approaches share the same sta-
tistical testing scenario. In this scenario, an online evalua-
tion experiment is deployed. After running this experiment
for a pre-defined period of time (e.g. a week), the experi-
ment is stopped. Next, some form of statistical test, such
as the binomial test in the case of interleaving, is performed
on the collected user interaction data to infer if a statisti-
cally significant difference between the tested alternatives
was observed. Importantly, in this scenario, each experi-
ment is deployed for the period of time that is fixed before
the experiment starts. However, it is likely that in some
experiments highly contrasting alternatives are compared,
and in that case it should be possible to stop the experi-
ment early and still be able to reliably detect preferences
between the compared alternatives. In this paper, we study
how to conduct a statistical analysis which is capable of
stopping such experiments early, and thus reduces the mean
experiment evaluation time. In our experimental study, we
demonstrate that our proposed early-stopping approach is
complementary to the approaches studied before, and the
online evaluation methods can benefit from combining ap-
proaches to improve sensitivity and to stop early.

2.2 Sequential testing
Sequential statistical testing appeared to address the de-

mands of the military testing during World War II, resulting
in Wald’s sequential probability ratio test (SPRT) [20]. This
test performs an analysis in steps. At each step, a new data
point is considered, and the decision is taken if the observed
data is enough to make a reliable conclusion about the con-
sidered hypotheses and the experiment should be finished,
or more measurements are required.

Despite its simplicity, SPRT was shown [21] to be optimal
when comparing two simple alternatives. Further research
was conducted to improve the SPRT-based methods in a va-
riety of directions. For instance, the 2-SPRT test was pro-
posed to minimise the expected sample size at a specified pa-
rameter when discriminating hypotheses H0 : θ = θ0 against
H1 : θ = θ1 > θ0 [2]. Another SPRT-based test that can be
used to test against a complex hypothesis, MaxSPRT [12],
was proposed for the post-approval drug safety surveillance.
These tests can be applied when the specific parameters of
one of the tested hypothesis are not known before running
the experiment. A similar problem arises while running on-
line experiments. Indeed, in interleaving experiments the
null hypothesis can be specified (both evaluated algorithms



are equally likely to win in a particular user session), but
the difference between the evaluated algorithms is hard to
estimate before running an experiment.

As an alternative to the SPRT-based tests, “repeated sig-
nificance tests”(RST) were proposed. As conventional single-
sample tests are often used in clinical trials, the motivation
behind RST is to apply them repeatedly during the trial.
These tests evolved into a group sequential RST [15], where
the data is accumulated between tests. Further, O’Brien
and Fleming [14] proposed a group sequential testing proce-
dure that had a better performance. These methods became
popular within clinical trials, as the sequential procedures
reduce the time the participants are exposed to ineffective
or harmful treatments.

Thereafter, the group sequential testing approach was in-
tensively developed. Wang and Tsiatis [23] suggested a para-
metric family of tests, which generalises both Pocock and
O’Brien&Fleming tests, and can be optimised to be nearly
optimal w.r.t. a fixed expected difference between the alter-
natives. Another improvement was proposed by Lan and
DeMets [13], which accounts for some specifics of the clini-
cal trials: the number of subjects available between stops is
not known in advance and can vary greatly.

Overall, sequential testing is a highly developed discipline,
and a variety of tests that differ by their properties and
assumptions was proposed. A review can be found in [2,
19]. Due to their properties, we select the O’Brien&Fleming
and MaxSPRT tests as a foundation for our study. These
tests are very practical, they do not require any a priori
assumptions about the expected effect size or its bound-
aries. The O’Brien&Fleming test can be interpreted as a
repeated standard Pearson’s chi-square test with progres-
sive stopping thresholds, so that the last threshold is close
to the one test scenario, which is very appealing from the
practical perspective. Similarly, the MaxSPRT-based tests
do not require any pre-experimental knowledge, and their
decisions are extremely transparent.

Finally, to the best of our knowledge, the only work that
mentions the use of sequential testing procedures in online
web search evaluation is [11]. In their work, Kohavi et al.
reports that the O’Brien&Fleming test is used in Bing to
abort A/B experiments early when a severe degradation in
metrics is observed. In contrast, we propose modifications of
the MaxSPRT tests for interleaving and A/B experiments,
and modify the O’Brien&Fleming test for the interleaving
evaluation. Moreover, we perform a thorough evaluation of
the usefulness of the considered tests.

3. ONLINE EXPERIMENTATION
In this section we briefly review how the A/B and inter-

leaving experiments are performed.

3.1 A/B tests
To perform an A/B comparison of a modified system B

to the baseline system A, each of the systems is assigned to
serve its own bucket of users (a bucket is a random sample of
users). Usually, each experiment lasts for a week or two [11],
so that the data collected contains sessions from each day
of the week. After stopping the experiment, some absolute
online metrics are measured on each bucket. These metrics
are compared across buckets, and the statistical significance
of the difference of the metrics is analysed, e.g. by means of
a t-test. More formally, denoting the expected values of the
metric µ on buckets A and B, as µA and µB respectively, we
are interested in comparing two statistical hypotheses, H0

and H1:

H0 : µA = µB , H1 : µA 6= µB (1)

A variety of online absolute metrics were proposed, and,
usually, a number of metrics is used in combination. For
instance, when optimising for revenue one needs to ensure
that there is no degradation in user satisfaction metrics [10].
Additionally, a set of diagnostic metrics might be used to au-
tomatically terminate a deployed experiment, when a severe
degradation in one of the metrics is observed [11]. The early
stopping procedures we study in this work are especially
useful in controlling the changes in the diagnostic metrics.

In our study we use the abandonment rate metric, which is
equal to the fraction of the user interactions with no results
clicked on. We believe that the extension of our study to
account for other metrics such as those representing user
engagement [5] is a promising direction for future work.

3.2 Interleaving
All of the existing interleaving methods share the same

idea. Suppose we want to compare two alternative rank-
ing algorithms, A (baseline) and B (evaluated system). To
compare them, we randomly select a sample of user sessions
in the session stream and use them in the experiment. For
each query submitted in the experiment, the results from A
and from B are retrieved. In the next step, these results are
mixed (interleaved) and then presented to the user.

While the approaches we discuss in our work can be ap-
plied for any existing interleaving methods, below we review
the Team Draft [18] interleaving method, as it is used in our
evaluation study. The interleaved result list is generated
from the result lists of A and B by the following algorithm.
The first result is selected from a random alternative. After
that, from the second alternative, we take the first result
that is not already included in the interleaved result list.
These two steps are repeated until the required number of
results is obtained.

As we discussed in Section 2, several approaches to ag-
gregate the user clicks observed in a session into a credit
obtained by A and B were proposed [3, 16, 24]. In this
study, we experiment with two aggregation schemes: the bi-
nary, and the deduped binary schemes. Under the binary
scheme, in each interaction, the alternative with the most
results clicked receives a unit credit and is referred to as the
winner. The deduped binary scheme is similar, but clicks
on the top-k results which are identical both in A and B
are ignored. In both schemes, interactions without clicks
are ignored. If in a session both A and B obtained an equal
number of clicks, the session is considered as tie.

The deduped credit assignment removes some additive
zero-mean noise from the user feedback. Despite its sim-
plicity, it was reported [3] that the deduped binary scheme
is one of the top-performing schemes, markedly reducing the
number of user interactions required to obtain a statistically
significant experiment outcome.

Let us denote a variable S that represents the probability
of B winning A in a session with a click, assuming that the
ties are broken randomly. After running an experiment, S
can be estimated as follows:

Ŝ =
wB + 1

2
t

wA + t+ wB
(2)

where wB and wA denote the number of sessions where B
and A win, respectively; t is the number of ties.



The goal of the statistical analysis methods we discuss in
Section 4 is to compare two statistical hypotheses, H0 (A
and B are equally likely to win a particular impression) and
H1 (the chances to win differ):

H0 : S =
1

2
, H1 : S 6= 1

2
(3)

4. STATISTICAL ANALYSIS
In this section, we introduce the sequential testing pro-

cedures we consider in this work. We start by describing
the procedures applicable for interleaving experiments (Sec-
tion 4.1): O’Brien&Fleming’s sequential test, modified for
interleaving (OBF-I), and the MaxSPRT test. After that,
we describe two tests applicable for A/B tests: the stan-
dard O’Brien&Fleming test, and our proposed MaxSPRT-
AB test, tailored for A/B test experiments. For all of these
tests, we also describe algorithms to train their stopping
thresholds.

4.1 Interleaving
While analysing an interleaving experiment, our goal is to

compare two statistical hypotheses (Equation (3)): under
the null hypothesis (H0), A and B have equal chances to
win an interleaving comparison in an interaction; under the
alternative hypothesis (H1) these chances are not equal.

OBF-I Initially, the O’Brien & Fleming’s sequential test
was formulated for clinical trials that compare two treat-
ments on two different groups of participants. In contrast,
in interleaving experiments only one group of users is used.
Below we describe our adaptation OBF-I of the OBF test to
the case of interleaving experiments.

Assume that the number of possible stops, where a sequen-
tial test is allowed to analyse accumulated data and make a
decision, is set to N . Let us introduce a random variable x
that is equal to 1 (−1) if B (A) wins in a comparison in an
interaction, and 0 if a tie is observed. By xj we denote the
realisation of x observed in jth session. Further, we denote
the number of sessions between the (i − 1)th and ith stops
as Ki. Under the null hypothesis, the probabilities of win-
ning a comparison in a session for A and B are equal. Thus,
according to the central limit theorem, the normalised mean
Ri of the realisations xj observed between the (i− 1)th and
ith stops approaches the standard normal distribution as Ki

grows:

Ri =
(x1 + ..+ xKi)

(Ki ·D[x])
1
2

∼ N(0, 1) (4)

where D[x] is an estimate of the variance of x.
Further, we denote the total number of sessions occurred

before the ith stop as Ti (Ti =
∑

j<iKj), and the accu-

mulated number of comparisons won by A (B) before the
ith stop as wA

i (wB
i ). Assuming that the number of the

sessions occurring between the stops is approximately the
same and equal to K, we define the accumulated statis-
tic Oi = ( 1√

i

∑i
1Rj)

2. Since
∑i

1Rj is a sum of variables

that are distributed according to N(0, 1), their scaled sum
1√
i

∑i
1Rj also has the standard normal distribution. Thus,

as a square of a standard normal variable, Oi is distributed
according to the chi-squared distribution with one degree of
freedom:

Oi =

(
1√
i

i∑
j=1

Rj

)2

=
(wB

i − wA
i )2

iK ·D[x]
=

(wB
i − wA

i )2

Ti ·D[x]
∼ χ2(1)

(5)

The estimate of the variance D[x] is:

D[x] =
1

Ti − 1

Ti∑
j=1

(xj − x̄)2, x̄ =
wB

i − wA
i

Ti
(6)

O’Brien and Fleming [14] proposed to apply a progressive
decision criterion where at the ith stop, Oi is compared to a
threshold 1

i
â that decreases at each stop (â depends on the

number of stops and required Type I error). This ensures
an intuitive requirement that to terminate an experiment
earlier, one needs to have a higher confidence in H1.

In an equivalent but more convenient formulation, at each
stop, a statistic i ·Oi can be considered, and compared to a
single fixed threshold a. Once it exceeds a, the experiment
is terminated, and H1 is accepted. To infer the experiment
outcome, the difference between wA

i and wB
i is used (i.e. if

wB
i > wA

i then B � A). If at the last stop N ·ON still does
not reach a then the hypothesis H0 is accepted.

For the cases of small numbers of stops (less or equal to
5), the values of the threshold a can be found in [14]. Since
in our experiments we use a higher number of stops, we
briefly review how the threshold can be obtained from run-
ning Monte-Carlo simulations. The general idea is to replace
Ri with random numbers generated from N(0, 1), and adjust
a so that the test will detect a difference in the α (required
Type I error level) fraction of the generated tests. Formally,
to perform one iteration of the simulation, we sample N
(N is the required number of stops) random numbers from
the standard normal distribution (U1, ..., UN ∼ N(0, 1)), and
calculate the maximum square of their partial sums U2

m =
max(U2

1 , (U1+U2)2, ..., (U1+...UN )2). We collect these max-
imums over 10,000 simulations. Finally, we select a value
that corresponds to (1− α) percentile of these maximums.

A possible heuristic is to replaceD[x] with its upper bound1

1. While this substitution might increase the time required
for Oi to achieve the threshold a, it also makes the decision
rule even simpler: at each stop i, a normalised square of the
difference between the wins of A and B is multiplied by the
number of the stop and compared to the threshold a. We
refer to a rule with this heuristic applied as OBF-I*.

Notably, OBF-I and OBF-I* assume that the number of
sessions performed between stops is large enough so that the
central limit theorem can be applied.

MaxSPRT At the core of the SPRT family of tests is the
likelihood ratio statistic. Informally, this statistic equates
to the likelihood of the observed data under the alternative
hypothesis H1 divided by the likelihood of the data under
H0. Once this ratio becomes big enough, H0 can be rejected.
To formalise this idea, we use the same notation as before.
By Ti we denote the total number of sessions before the ith
stop, wA

i (wB
i ), and ti are the numbers of sessions where A

(B) wins, and the number of sessions with ties, respectively.
Further, by mi we denote our estimate of the number of the
comparisons won by B after breaking the ties:

mi = wB
i +

1

2
ti

Under this notation, the logarithm of the likelihood statistic
can be specified as follows:

Li = log
pmi
1 (1− p1)Ti−mi

pmi
0 (1− p0)Ti−mi

(7)

1A unit variance is achieved if on each tie a coin is tossed and
a unit credit is assigned to a random alternative. However,
this might be a good approximation since for a tie to occur
at least two results must be clicked, which happens rarely.



Input: Type I error tolerance α, a set of A/A
experiments Q.

Output: L̄ threshold.
//the vector of the ratio values observed in experiments
Ls← ∅
//iterate over experiments
foreach e ∈ Q do

//iterate over sessions in e
Lm ← 0
foreach i ∈ 1..|e| do

Ti ← wB
i + ti + wA

i , mi ← wB
i + 1

2
ti

//find the max. likelihood estimate p̂i1 of p1
p̂i1 ← 1

Ti

[
wB

i + 1
2
ti
]

Li ← log
(p̂i1)

mi (1−p̂i1)
Ti−mi

p
mi
0 (1−p0)

Ti−mi

//update the maximum value of Lm for the
current experiment
Lm ← max(Lm, Li)

end
Ls← Ls

⋃
{Lm}

end
Ls← sorted(Ls)
L̄← Ls[|Ls| · (1− α)]

Algorithm 1: Learning the L̄ threshold for MaxSPRT
from a dataset of A/A experiments.

where p0 and p1 are probabilities of B winning in a compar-
ison in an interaction under H0 and H1, respectively. Under
the null hypothesis, the alternatives are equally likely to
win, so p0 equals to 1

2
. However, it is hard to specify p1 be-

fore actually running the experiment. An intuitive idea is to
replace it with the maximum likelihood estimate p̂i1, based
on the experimental data observed before the ith stop. In-
formally, by estimating p̂i1 we choose H1 that is the most
likely to be accepted in comparison with H0. This idea was
proposed and studied by Kulldorff et al. [12] for the Pois-
son and Binomial distributions, and resulted in a test called
MaxSPRT. Under our notation, the maximum likelihood es-
timate of p1 at the ith step is:

p̂i1 =
1

Ti

(
wB

i +
1

2
ti

)
At each stop, p̂i1 is estimated, and is used as a substitute
of p1 in Li (Equation (7)). After that, Li is compared to a
pre-defined threshold L̄. If Li ≥ L̄, then the experiment is
stopped, and H1 is accepted. If p̂i1 >

1
2

(p̂i1 <
1
2
) then it is

inferred that B � A (A � B). If Li < L̄, the experiment
is continued. H0 is accepted if the experiment reaches a
pre-defined maximum length, without achieving L̄.

To specify the threshold L̄, Kulldorff et al. [12] used a
Monte-Carlo method, where a series of Binomial samples
were generated. However, as we further discuss in Section 7,
in the case of the interleaving experiments where the ties
are interpreted according to Equation (2), this Monte-Carlo
threshold adjustment is suboptimal, as it generates data
with variance higher than observed in experiments.

Instead, we propose to train the threshold L̄ on a set of
experiments where a system is compared with itself. As we
discuss further in Section 5, such experiments are referred to
as A/A experiments. Intuitively, a statistical test with Type
I error set to α should detect differences in A/A experiments
approximately with the probability α. Using this idea, we
adjust the threshold L̄ so that L̄ exceeds all values of Li in
(1−α) of the A/A experiments. A formal description of the
optimisation of the threshold can be found in Algorithm 1.

Further, the MaxSPRT test with the threshold L̄ trained
using Monte-Carlo simulations is denoted as MaxSPRT-I-
MC. The test with the threshold L̄ trained using the A/A
comparisons is referred to as MaxSPRT-I-AA.

Note that when the deduped binary click scoring scheme
is applied, all clicks in A/A experiments are ignored, since in
the results lists of the compared alternatives all their results
are identical. However, we still want our test not to detect a
difference between systems when the results are not identical
documents, but are equally likely to be clicked, to satisfy the
user. Thus, we use the thresholds trained using the binary
click aggregation scheme when evaluating the test on the
experiments with the binary deduped scheme applied.

The MaxSPRT test assumes that the data points arrive
one-by-one, which might be impractical on modern large-
scale web search engines. Indeed, an infrastructure is needed
that is capable of providing a near real-time stream of indi-
vidual comparisons. It can be easier to implement the data
delivery in batches, e.g. each batch of data corresponding to
an hour or a day of the user activity. Since the discussed
tests can be applied to analyse batch data by simply consid-
ering the aggregated values of the variables such as wA

i wB
i ,

we experiment in the batch scenario.

4.2 A/B tests
The goal of the statistical analysis of the A/B tests is

to compare two hypotheses (Equation (1)). Under the null
hypothesis, the means of a considered metric are equal in the
buckets assigned for A and B, while under the alternative
hypothesis they are different.

OBF The original test proposed by O’Brien&Fleming can
be directly applied to A/B tests. Below we shortly review
how it is defined. By µ̂A

i and µ̂B
i we denote the sample

mean values of a metric µ calculated using the data collected
before the ith stop on buckets (samples of users) associated
with A and B, respectively. The total number of sessions
that took place before the ith stop are referred to as TA

i

and TB
i . The number of stops is fixed to N , the number of

sessions between stops is assumed to be roughly equal and
large enough for the central limit theorem to be applicable.

At each stop, the following statistic is considered:

Zi = i

(
µ̂A
i − µ̂B

i

)2
D[µ̂A − µ̂B ]

(8)

We follow [14] and use the pooled estimate of varianceD[µ̂A−
µ̂B ] assuming H0:

D[µ̂A
i − µ̂B

i ] =
(

1
TA
i

+ 1
TB
i

)
D[x],

D[x] = 1
TA
i +TB

i −1

(∑TA
i +TB

i
j=1 (xj − x)2

) (9)

where xj iterates over the metric values observed in all ob-
served interactions before the ith stop.

Similarly to the interleaving case, at each stop the value of
the statistic Zi is compared to a constant threshold a. Once
it reaches the threshold, the experiment is stopped and H1

is accepted. If at the last stop ZN is still less than a, H0

is accepted. The threshold a is calculated using the same
Monte-Carlo algorithm as in the case of interleaving.

MaxSPRT-AB The MaxSPRT rule cannot be easily ap-
plied for the case of A/B experiments, since the distribution
of the considered metric is unknown both under H0 and H1.
To address this, we propose to estimate both the distribu-
tion of the metric under the null hypothesis and under the
alternative hypothesis using data from the experiment itself.



Under the null hypothesis, the distribution of the metric co-
incides in both buckets, but under H1 the distributions are
different. Further, by DA

i (DB
i ) we denote the data observed

in a bucket corresponding to A (B) upto the ith stop. In
that case, the likelihood ratio statistic in the case of the
abandonment rate metric can be represented as follows:

Li = log
P (DA

i , D
B
i |pAi , pBi )

P (DA
i , D

B
i |p0i )

(10)

where pAi and pBi are the maximum likelihood estimates of
the probabilities of a user abandoning the result page, ob-
tained on buckets corresponding to A and B, respectively.
Similarly, p0i is the maximum likelihood estimate of the prob-
abilities of a user abandoning the result page, calculated on
both buckets. P (DA

i , D
B
i |pAi , pBi ) is calculated according to

Equation (11):

P (DA
i , D

B
i |pAi , pBi ) = (pAi )C

A
i (1− pAi )T

A
i −CA

i ·
·(pBi )C

B
i (1− pBi )T

B
i −CB

i
(11)

where CA
i and CB

i are the number of abandoned result pages
for A and B buckets before the ith stop, respectively. Simi-
larly, TB

i and TA
i are the total numbers of sessions in these

buckets before the ith stop.
Under the null hypothesis, the likelihood of the observed

data is calculated as follows:

P (DA
i , D

B
i |p0i ) = (p0i )C

A
i (1− p0i )T

A
i −CA

i ·
·(p0i )C

B
i (1− p0i )T

B
i −CB

i
(12)

The maximum likelihood estimates p0i , pAi , and pBi can be
found as follows:

p0i =
CA

i + CB
i

TA
i + TB

i

, pAi =
CA

i

TA
i

, pBi =
CB

i

TB
i

(13)

Once Li achieves a pre-fixed threshold L̄, the experiment
is stopped and H1 is accepted. Otherwise, the experiment
is continued. If the experiment reaches a fixed duration, H0

is accepted. Again, the threshold is learned by finding the
(1 − α) percentile of the distribution of Li statistic on the
dataset of A/A experiments, as in Algorithm 1.

5. DATASETS
In our evaluation study we use datasets of A/B and inter-

leaving experiments obtained from Yandex. For diagnostic
purposes, it is useful for a search engine to deploy a con-
stantly running online experiment that compares the current
production system with itself ([10], Section 2). Further, we
refer to such an experiment as an A/A comparison, whether
the comparison is performed by A/B test or by means of in-
terleaving. Since we know that the alternatives are equal in
this comparison, we want the statistical testing procedure
to find statistical differences in this evaluation rarely (i.e.
H0 should be rejected about 1% of the time, when testing
is performed on p < 0.01 significance level).

Another source of the experiments are the regular exper-
iments that are deployed to evaluate new search engine im-
provements. In our evaluation study, we compare the se-
quential testing approach to a standard scenario, where ex-
periments are deployed for an integer number of weeks. To
increase the size of the dataset, we consider the case of the
experiments that last for one week. However, as the exper-
iments differ in the expected effect size (detecting smaller
differences between A and B require more sessions), they
also vary in their duration. For this reason, we restrict each

experiment to its first 7 days. The ground-truth outcomes
used in our evaluation are calculated using the full experi-
mental data. However, the one-step baseline tests (t-test and
binomial test) use the same restricted experimental data as
is provided for the evaluated sequential tests.

Interleaving In our dataset of interleaving experiments,
we include data from two interleaving-based A/A experi-
ments over a period of 300 days during 2014. These two ex-
periments were deployed in two different countries. Further,
we sampled 206 real-life interleaving experiments that were
deployed to evaluate changes in the ranking algorithms, and
lasted for at least a week during the same 300 days. Among
these experiments, a statistically significant outcome (binary
credit scheme, p < 0.001, binomial test) is observed in 115
experiments (B outperforms A in 56 experiments).
A/B tests Similarly to the interleaving dataset, we in-

cluded the query log data generated by two long-term A/A
tests that compare the production system with itself. This
data spans a two month period, from April to May, 2014.
These two experiments were deployed in two countries. Fur-
ther, we also sample 62 A/B tests that were performed
as a part of the search engine’s evaluation routine. From
these experiments, we select 41 experiments that have a
statistically significant outcome (abandonment rate metric,
p < 0.01, t-test). In 14 experiments, B outperformed A.

6. EVALUATION METHODOLOGY
We split our discussion of the evaluation methodology in

two sections. In Section 6.1 we introduce the quality metrics
we use in our evaluation. In Section 6.2 we describe the
evaluation procedure we use.

6.1 Metrics
Our first metric, Type I error, represents the probability

of a statistical test rejecting the null hypothesis H0 when it
holds:

α = P (H1 accepted |H0 holds)

Generally, we want Type I error to be low, as each experi-
ment wrongly accepted as successful might result in expen-
sive development, wastes both human and computational
resources without improving the search engine.

The second metric we consider is Type II error, which
measures the probability of accepting the null hypothesis
when it does not hold:

β = P (H0 accepted |H1 holds)

High values of β indicate that non-equal alternatives A and
B are frequently accepted as equal, and this results in ig-
noring opportunities to improve a search engine.

The Type II error metric defined as above does not pe-
nalise cases when the null hypothesis is correctly rejected,
but the preference is inferred incorrectly (e.g. A � B is ac-
cepted when in reality B � A)2. Thus we introduce two
one-sided accuracy metrics, AccA�B and AccB�A:

AccA�B = P (accepted that A � B|A � B)
AccB�A = P (accepted that B � A|B � A)

These metrics are related to Type II error, however they
additionally penalise the above discussed cases of the incor-
rectly inferred preferences.

2This situation arises as our tests have effectively three out-
comes: A � B, B � A, and B is not different from A.



Mean deployment time, E(T ). This metric is defined
as the mean time the experiment is deployed before a sequen-
tial testing procedure stops. For the non-sequential one-step
tests that we use (namely, t-test and binomial sign test), the
value of this metric is set to the experiment length. For con-
venience, we measure this metric in days. Generally, it might
be more important to stop an experiment where A � B than
an experiment where B � A, as in the former case the user
experience is degraded. Thus we additionally consider two
time-related metrics which measure the expected duration
of the experiments where A � B and B � A. We denote
these metrics as E(T |A � B) and E(T |B � A).

Mean relative number of sessions, E( N
N0

). The last
metric we use represents the relative number of search inter-
actions required until the experiment is stopped, averaged
over all experiments in the dataset. In other words, if an
experiment contains N0 sessions (after restricting to its first
7 days), and the sequential testing procedure stops an ex-
periment after observing only N sessions, the value of the
metric is equal to N

N0
on this experiment.

In our evaluation study, for each sequential testing proce-
dure we fix the Type I error probability and the maximum
deployment time to be the same. Under these constraints,
the baseline one-step approach achieves the minimum Type
II error level among all possible rules. Thus, our goal is to
find a sequential testing procedure that reduces the mean de-
ployment time for the experiments in our dataset as much as
possible, and has its Type II error level close to the baseline
approach.

6.2 Evaluation Protocol
The A/A experiments, which compare a system with it-

self, either by means of interleaving or in a A/B test, are a
perfect source of the data to calculate the Type I error prob-
ability (i.e. probability of finding a difference when there is
none). Indeed, in the A/A experiments the null hypothe-
sis H0 definitely holds. Thus, any event where a statistical
test detects a difference between the tested alternatives in
an A/A experiment, is a Type I error.

Using this observation, we apply the following scheme to
measure the Type I error probability for a statistical test.
First, we split each of the available A/A experiments in two
non-overlapping parts. The first part is used for learning
the stopping thresholds. The second part is used for calcu-
lating the Type I error probability. To calculate this prob-
ability, we generate a set of smaller experiments of length
equal to the length of the real experiments in the dataset
(7 days). This set is generated by moving a sliding window
from the beginning of the A/A experiment towards its end.
The length of the window is equal to 7 days for both the
A/B and interleaving experiments. We measure the Type
I error probability as the relative number of generated ex-
periments where the testing procedure detects a difference
between two compared systems. The initial splitting is re-
peated in the cross-validation process, so that each day of
the experiment is included in the evaluation subset exactly
once. We use 20-fold cross-validation in the case of inter-
leaving, and 10-fold for A/B tests (due to a smaller size of
the dataset).

In the evaluated tests, we set the tolerances for the Type
I error to be 0.01 and 0.05 for the interleaving and the A/B
experiments, respectively. Generally, we want to experi-
ment with lower tolerance values, as this closer resembles
the requirements for real experiments. These tolerance lev-
els should be higher than the p-values we use to infer the

ground-truth labels, so that the measurements are meaning-
ful. In turn, using low p-values when obtaining the ground-
truth labels significantly reduces the sizes of the datasets.
Thus we believe that the selected values are reasonable.

To calculate the remaining metrics (Type II error, AccA�B ,
AccB�A, E(T ), E( N

N0
)), we use the experiments that com-

pare real-life changes in a search engine. As a ground-truth
labels (A � B or B � A) we use the results of the binomial
test (p < 10−3) for the interleaving experiments, and the
t-test (p < 10−2) for A/B experiments.

An alternative approach to calculate Type II errors is to
use a set of experiments, where the tested alternative B
is specifically degraded with respect to A. This degrada-
tion might be achieved by swapping the first and the second
results, degraded snippets, using an inferior ranking algo-
rithm, etc. However, building a big dataset of experiments,
where the user experience is specifically degraded in differ-
ent ways, can be unrealistic. Another concern is that such
manually devised degradations cannot be considered as a
representative sample of the real-life experiments, and thus
measuring how they can be accelerated might be useless.

In our evaluation study, we vary the number of the stops
used. In the first case, the stops are performed each day (i.e.
7 stops), and in the second case stops are performed every
hour (i.e. 7 · 24 = 168 stops). While the SPRT-based tests
can be applied on the per-interaction level, the gains from
such a scenario cannot be more than an hour in comparison
with the scenario with stops every hour.3 On the other
hand, to apply a per-interaction SPRT test, one would need
to build an elaborated near real-time data delivery system.

7. RESULTS AND DISCUSSION
In this section we discuss the results of our evaluation

study on the datasets of interleaving (Section 7.1) and A/B
(Section 7.2) experiments. Further, we perform a visuali-
sation of the decisions of the best-performing tests in Sec-
tion 7.3.

7.1 Interleaving
By OBF-I we denote the adaptation of the O’Brien&Fleming

test which we discussed in Section 4.1. By OBF-I* we denote
the simplified modification of OBF-I that approximates the
variance by the unity. MaxSPRT-I-MC is the MaxSPRT test
with its L̄ threshold trained by the Monte-Carlo approach.
In contrast, MaxSPRT-I-AA corresponds to the MaxSPRT
test with its L̄ threshold trained on the dataset of A/A ex-
periments by Algorithm 1.

In Tables 1 & 2 we report the results of the evaluation of
the sequential testing rules on the dataset of the interleaving
experiments, in the cases of the binary and deduped binary
click aggregation schemes, respectively. On analysing these
results we firstly notice that the Type I error levels measured
for all the considered testing rules are close to the tolerance
level we set in the threshold learning process, 0.01. The
observed deviations might be caused by a limited size of the
dataset we use.

Further, on analysing the Type II error metric reported
in Table 1, we notice that the values of this metric are very
close for all tests and are in the range of 0.10 − 0.13, ex-
cept for the MaxSPRT-I-MC test, which has higher error
levels (e.g. Type II error probabilities are 0.23 and 0.19, for
the cases with 7 and 7 · 24 stops, respectively). In the case

3Due to the design of the test. This observation is also
supported by our preliminary experiments.



Table 1: The quality metrics of the considered tests, measured on the dataset of interleaving experiments (binary scheme).
The values of the metrics in bold outperform other in the same column; the values marked with 4 outperform the values of
the metric among other sequential tests, p < 0.05, Wilcoxon paired test (across folds).

Test # stops Type I Type II AccB�A AccA�B E(T ), days E(T |B � A) E(T |A � B) E( N
N0

)

Binomial 1 0.00 0.10 0.75 0.90 7.00 7.00 7.00 1.00

OBF-I* 7 0.01 0.10 0.73 0.92 3.17 3.17 3.04 0.44
OBF-I 7 0.01 0.094 0.73 0.954 3.00 3.04 2.92 0.42
MaxSPRT-I-MC 7 0.004 0.23 0.64 0.76 3.96 4.00 3.92 0.53
MaxSPRT-I-AA 7 0.004 0.13 0.71 0.87 3.10 3.20 3.30 0.44

OBF-I* 7 · 24 0.01 0.11 0.754 0.88 3.58 3.54 3.67 0.45
OBF-I 7 · 24 0.01 0.094 0.754 0.93 3.33 3.38 3.29 0.44
MaxSPRT-I-MC 7 · 24 0.004 0.19 0.71 0.76 3.38 3.38 3.42 0.43
MaxSPRT-I-AA 7 · 24 0.004 0.12 0.73 0.89 2.614 2.634 2.584 0.354

with the deduped binary scheme (Table 2) the Type II er-
ror probabilities are also close for all the considered tests.
However, they are considerably smaller, in the 0.03 − 0.05
range. In both Table 1 and Table 2 the lowest Type II er-
ror is achieved by the OBF-I test. Similarly, in both cases
OBF-I demonstrates the highest AccA�B and AccB�A met-
rics. In particular, in Table 1, the AccB�A metric of 0.75 is
achieved when 7 · 24 stops are used, and the AccA�B of 0.95
is achieved when 7 stops are used.

However, when considering the mean time metric E(T ),
the difference between the tests becomes marked. In the
case of the binary click aggregation scheme (Table 1), all
the evaluated rules achieved considerable improvements over
the standard 7-day scenario. Among the tests that use 7
stops, on average, MaxSPRT-I-MC stops the experiments
later than other tests (e.g. 3.96 MaxSPRT-I-MC vs 3.10
MaxSPRT-I-AA, 7 stops). The shortest mean time (3.00)
is demonstrated by the OBF-I test. Somewhat higher, but
a close value of 3.10 is achieved by MaxSPRT-I-AA.

On comparing the scenarios with 7 and with 7·24 stops, we
firstly notice that the MaxSPRT-I-MC and MaxSPRT-I-AA
tests greatly benefit from using additional stops. Indeed, the
mean time is reduced for the MaxSPRT-I-MC test from 3.96
to 3.38. Similarly, MaxSPRT-I-AA has improved the mean
experiment running time from 3.10 to 2.61, and achieved the
best performance. This behaviour is intuitive: with more
stops available, there is more potential to stop earlier.

In contrast, OBF-I and OBF-I* the tests demonstrate
some degradation in their E(T ) metrics when 7 ·24 stops are
used. For instance, OBF-I increased the mean deployment
time from 3.00 to 3.33. A possible explanation is that OBF-
I and OBF-I* rely on the central limit theorem, which only
holds when the sample size approaches infinity. On the other
hand, as the number of stops used by a test increases, less
sessions are observed between stops, and this might harm
the performance of OBF-I and OBF-I*. Another possible
source of the error is that the OBF-based tests assume that
the number of sessions between stops is uniform, which can
be violated when stops are close.

From Table 2, we observe that MaxSPRT-AA has the
shortest mean deployment time both among the tests with
7 stops (1.81), and among the tests with 7 · 24 stops (1.28).
When 7 stops are used, OBF-I has a relatively close perfor-
mance (1.83), but underperforms in the case of 7 · 24 stops.

Again, we notice that the OBF-I and OBF-I* tests de-
grade when the number of stops is increased, but MaxSPRT-
I-MC and MaxSPRT-I-AA both improve their performance.
Moreover, MaxSPRT-I-AA achieves the shortest mean de-
ployment time when 7 · 24 stops are used.

On comparing Tables 1&2, we observe that when the
deduped click aggregation scheme is applied, the Type II
error probability and the mean deployment time decrease,
while the AccA�B and AccB�A metrics grow for all the eval-
uated tests. This indicates that the deduped binary click
scheme leads to marked gains in the sensitivity of the inter-
leaving experiments.

An interesting observation is that the difference in the
mean deployment times for OBF-I and OBF-I* are relatively
close (not more than 0.25 days or 6 hours in the scenario
with 7 stops). However, the difference between MaxSPRT-
I-AA and MaxSPRT-I-MC is bigger (0.86 days ≈ 21 hours
maximum). In all scenarios MaxSPRT-I-AA outperforms
MaxSPRT-I-MC, indicating that replacing the Monte-Carlo
threshold estimate with the threshold learned from the A/A
tests improves the test’s performance.

We also observe that the relative improvements measures
by the E(T ) metric are well aligned with the improvements
measured by the E( N

N0
) metric (e.g. MaxSPRT-I-AA with

7 ·24 stops reduces the mean deployments time by 82%, and
uses only 0.15 of the available sessions).

We conclude that the MaxSPRT-I-AA test with 7·24 stops
and the deduped binary click aggregation scheme achieves
the smallest deployment time. In comparison to the stan-
dard 7-day scenario with the binary click aggregation scheme,
on our dataset of the interleaving experiments, the combi-
nation of the sequential testing approach and the improved
click aggregation scheme achieves 82% increase in the effi-
ciency (1.28 vs 7.00 days).

7.2 A/B experiments
To discuss our evaluation of the sequential tests that can

be applied for the A/B experiments, we use the following
notation. By OBF we denote the original O’Brien&Fleming
test [14], discussed in Section 4.2. Our proposed adaptation
of the MaxSPRT test to the A/B experiments is further
referred to as MaxSPRT-AB.

On analysing Table 3, we notice that the Type I error
probabilities are close to 0.05. Again, we believe that the
deviations can be explained by a limited size of the dataset.
Further, we observe that the Type II error levels vary con-
siderably among the tests: from 0.15 for the OBF test with
7 stops to 0.03 for the MaxSPRT-AB test with 7 · 24 stops.

As earlier, we observe that in terms of the mean deploy-
ment time metric MaxSPRT-AB test considerably benefits
from increasing of the number of stops: E(T ) decreases from
3.28 to 2.38. However, OBF demonstrates virtually the same
mean deployment time for these two cases (4.38 vs 4.25).



Table 2: The quality metrics of the considered tests, measured on the dataset of interleaving experiments (binary deduped
scheme). The values of the metrics in bold outperform other in the same column; the values marked with 4 outperform the
values of the metric among other sequential tests, p < 0.05, Wilcoxon paired test (across folds).

Test # stops Type I Type II AccB�A AccA�B E(T ), days E(T |B � A) E(T |A � B) E( N
N0

)

Binomial 1 0.00 0.03 0.82 0.95 7.00 7.00 7.00 1.00

OBF-I* 7 0.01 0.034 0.824 0.954 1.96 1.83 2.04 0.24
OBF-I 7 0.01 0.034 0.824 0.954 1.83 1.71 2.00 0.23
MaxSPRT-I-MC 7 0.004 0.05 0.824 0.93 2.19 2.00 2.37 0.25
MaxSPRT-I-AA 7 0.004 0.05 0.824 0.93 1.81 1.64 1.98 0.22

OBF-I* 7 · 24 0.01 0.04 0.824 0.954 2.13 2.04 2.21 0.26
OBF-I 7 · 24 0.01 0.034 0.824 0.954 1.96 1.92 2.05 0.24
MaxSPRT-I-MC 7 · 24 0.004 0.05 0.824 0.93 1.63 1.44 1.85 0.17
MaxSPRT-I-AA 7 · 24 0.004 0.05 0.824 0.93 1.284 1.114 1.444 0.154

Further, we notice that for any number of stops, MaxSPRT-
AB demonstrates shorter mean deployment time than OBF
(e.g. 4.25 vs 2.38 in the case of 7 ·24 stops). The overall min-
imum of E(T ) is achieved by MaxSPRT when 7 ·24 stops are
used. This value corresponds to the 66% reduction in time
in comparison to the standard one-stop scenario.

7.3 Visualisation
We illustrate the best-performing MaxSPRT-I-AA and

MaxSPRT-AB tests as follows. First, we sample a random
subset of experiments, including experiments with A outper-
forming B, B outperforming A (according to the ground-
truth labels), and A/A experiments. Second, for each of
these experiments, at each stop i we calculate the log-likelihood
ratio Li multiplied by the sign of the current estimate of
difference between A and B. More specifically, in the case
of interleaving experiments, we multiply the log-likelihood
(Equation (7)) by the sign of the current estimate of (p̂i1− 1

2
):

sign

(
p̂i1 −

1

2

)
· Li (14)

In the case of A/B experiments, we multiply the log-likelihood
ratio Li (Equation (10)) by the sign of the differences of the
current estimates of p̂Bi − p̂Ai :

sign
(
p̂Bi − p̂Ai

)
· Li (15)

By definition, the absolute values of Equations (14)&(15)
are equal to the log-likelihood ratio Li, and their signs in-
dicate which system tends to be better according to the ob-
served data4 (e.g. if (14) is positive, then B � A, and vice-
versa). As a result, whenever the values of Equations (14)&(15)
leave the corresponding interval [−L̄,+L̄] (L̄ is different for
interleaving and A/B experiments), the experiment is ter-
minated and a decision is made (e.g. B � A if the upper
boundary is touched).

We report our obtained results in Figure 1. Figures 1a
and 1b correspond to the MaxSPRT-I-AA test with the bi-
nary and the binary deduped click aggregation schemes. Fig-
ure 1c corresponds to the MaxSPRT-AB test. The green and
red lines correspond to the experiments that are labelled as
B � A and A � B according to the ground-truth labels.
The black lines correspond to the sampled A/A experiments.
The horizontal dashed lines indicate the boundaries of the
intervals [−L̄,+L̄].

From Figure 1 we observe that despite some fluctuations,
the likelihood ratios for the sampled A/A experiments are
4In the case of MaxSPRT-AB this holds as the log-likelihood
ratio (10) is non-negative.

well within the boundaries of the decision interval at each
of the stops. Next, for most of the interleaving experiments
with A outperforming B, the statistic (14) falls towards the
lower bound (−L̄). In contrast, several experiments with
B � A have their statistic reaching the wrong boundary.
These cases result in decreasing the AccB�A value. This
observation agrees with the results reported in Tables 1 &
2. Indeed, the AccB�A metric values are lower than AccA�B

in every row of these tables. Thus, in a random sample it is
more likely to meet errors of wrongly rejecting B � A than
the opposite case of rejecting A � B. Finally, on comparing
Figure 1a and Figure 1b, we observe that the experiments
are terminated faster in Figure 1b that corresponds to the
case of the binary deduped click aggregation scheme. Again,
this observation agrees with the results discussed above.

Overall, from our experiments we observe that by using
sequential testing procedures considerable gains can be ob-
tained in the mean time experiments are deployed, with-
out significant degradation in other metrics, such as Type
I, Type II errors, AccA�B , and AccB�A. In the case of the
interleaving experiments with the binary click aggregation,
a reduction in the execution time of 63% can be achieved
by using the MaxSPRT-I-AA test with 7 · 24 stops. More-
over, the proposed sequential tests can be combined with the
previously proposed deduped click aggregation scheme, and
this combination results in even bigger improvements (82%).
A similar observation holds in the case of the A/B tests: a
decrease in the mean execution time of 66% is achieved by
the MaxSPRT-AB test.

8. CONCLUSIONS AND FUTURE WORK
In this work we address an important problem of increas-

ing the efficiency of the online evaluation experiments. In
particular, we studied how sequential testing procedures can
be adapted to reduce the time online evaluation experiments
require. These procedures are designed so that they can stop
online experiments when the observed data is sufficient to
make a reliable conclusion about the experiment’s outcome.

We proposed a modification of the O’Brien&Fleming group
sequential test that can be applied to interleaving evalua-
tion. Further, we described an approach to improve the
MaxSPRT test’s performance by adjusting its stopping thresh-
old on the dataset of A/A experiments. Finally, we de-
scribed a MaxSPRT-based test that can be applied in the
A/B experiments to assess differences in the means of the
abandonment rate metric.

In our evaluation study we used two datasets, contain-
ing 115 interleaving and 41 A/B experiments. Our study



Table 3: The quality metrics of the considered tests, measured on the dataset of A/B experiments. The values of the metrics
in bold outperform other in the same column; the values marked with 4 outperform the values of the metric among other
sequential tests in the column, p < 0.05, Wilcoxon paired test (across folds).

Test # stops Type I Type II AccB�A AccA�B E(T ), days E(T |B � A) E(T |A � B) E( N
N0

)

T-test 1 0.03 0.03 1.00 0.93 7.00 7.00 7.00 1.00

OBF 7 0.03 0.15 0.934 0.70 4.38 3.90 4.65 0.60
MaxSPRT-AB 7 0.004 0.11 0.87 0.78 3.28 3.48 3.17 0.43

OBF 7 · 24 0.03 0.05 1.004 0.894 4.25 3.80 4.80 0.57
MaxSPRT-AB 7 · 24 0.03 0.034 0.934 0.854 2.384 2.544 2.334 0.314
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(a) MaxSPRT-I-AA, binary scheme.
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(b) MaxSPRT-I-AA, binary deduped scheme.
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(c) MaxSPRT-AB, abandonment rate.

Figure 1: Illustrating the MaxSPRT tests. Green and red lines correspond to the experiments with B � A and A � B ground-
truth labels, respectively. Black lines correspond to A/A experiments. The horizontal dashed lines denote the threshold values
for accepting B � A (green) and A � B (red).

demonstrates that by using the sequential testing proce-
dures, a marked reduction in the duration of the experiments
can be achieved, without significant losses in other metrics,
such as Type I and Type II error probabilities. The maximal
improvement over a standard 7 day one-stop scenario on the
dataset of interleaving experiments reaches 63% by using
the MaxSPRT-I-AA test, which examines the experiment
data every hour. Further improvement can be obtained by
additionally using an improved deduped binary click aggre-
gation scheme, and it reaches 82%. This supports the idea
that the sequential testing approach is complimentary to the
previous research, which concentrated on reducing noise in
the user feedback. On the dataset of A/B experiments, the
MaxSPRT-AB test obtains an improvement of 66% over the
same standard evaluation scenario. An interesting direction
of future work is to devise a MaxSPRT-based test for the
non-binomial A/B metrics (e.g., absence time [5]).
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