Does individual variation in metabolic phenotype predict fish behaviour and performance?

Metcalfe, N. B. , Van Leeuwen, T. E. and Killen, S. S. (2015) Does individual variation in metabolic phenotype predict fish behaviour and performance? Journal of Fish Biology, 88(1), pp. 298-321. (doi:10.1111/jfb.12699) (PMID:26577442)

[img]
Preview
Text
104505.pdf - Published Version
Available under License Creative Commons Attribution.

175kB

Abstract

There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Killen, Dr Shaun and Van Leeuwen, Dr Travis and Metcalfe, Professor Neil
Authors: Metcalfe, N. B., Van Leeuwen, T. E., and Killen, S. S.
College/School:College of Medical Veterinary and Life Sciences > Institute of Biodiversity Animal Health and Comparative Medicine
Journal Name:Journal of Fish Biology
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0022-1112
ISSN (Online):1095-8649
Copyright Holders:Copyright © 2015 The Authors
First Published:First published in Journal of Fish Biology 88(1):298-321
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
594261The Influence of Individual Physiology on Group Behaviour in Fish SchoolsShaun KillenNatural Environment Research Council (NERC)NE/J019100/1RI BIODIVERSITY ANIMAL HEALTH & COMPMED