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Abstract: That the speed of light in free space is constant is a cornerstone of modern 
physics. However, light beams have finite transverse size, which leads to a modification 
of their wavevectors resulting in a change to their phase and group velocities. We study 
the group velocity of single photons by measuring a change in their arrival time that 
results from changing the beam’s transverse spatial structure. Using time-correlated 
photon pairs we show a reduction of the group velocity of photons in both a Bessel beam 
and photons in a focused Gaussian beam. In both cases, the delay is several micrometers 
over a propagation distance of the order of 1 m. Our work highlights that, even in free 
space, the invariance of the speed of light only applies to plane waves.  

Main text 

The speed of light is trivially given as 𝑐/𝑛, where 𝑐 is the speed of light in free space and 
𝑛 is the refractive index of the medium. In free space, where 𝑛 = 1, the speed of light is 
simply 𝑐. We show that the introduction of transverse structure to the light beam reduces 
the group velocity by an amount depending upon the aperture of the optical system. The 
delay corresponding to this reduction in the group velocity can be greater than the optical 
wavelength and consequently should not be confused with the HÀ Gouy phase shift (1, 2). 
To emphasize that this effect is both a linear and intrinsic property of light, we measure 
the delay as a function of the transverse spatial structure of single photons. 

The slowing down of light that we observe in free space should also not be confused with 
slow, or indeed fast, light associated with propagation in highly nonlinear or structured 
materials (3, 4). Even in the absence of a medium, the modification of the speed of light 
has previously been known. For example, within a hollow waveguide, the wavevector 
along the guide is reduced below the free-space value, leading to a phase velocity 𝑣𝜙 
greater than 𝑐. Within the hollow waveguide, the product of the phase and group 
velocities is given as 𝑣𝜙𝑣𝑔,𝑧 = 𝑐2, thereby resulting in a group velocity 𝑣𝑔,𝑧 along the 
waveguide less than 𝑐 (5). 
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Although this relation for group and phase velocities is derived for the case of a hollow 
waveguide, the waveguide material properties are irrelevant. It is the transverse spatial 
confinement of the field that leads to a modification of the axial component of the 
wavevector, 𝑘𝑧. In general, for light of wavelength 𝜆, the magnitude of the wavevector, 
𝑘0 = 2𝜋/𝜆, and its Cartesian components {𝑘𝑥,𝑘𝑦,𝑘𝑧} are related through (5) 

𝑘𝑧2 + 𝑘𝑥2 + 𝑘𝑦2 = 𝑘02. 

All optical modes of finite 𝑥,𝑦 spatial extent require non-zero 𝑘𝑥 and 𝑘𝑦, which implies 
𝑘𝑧 < 𝑘0, giving a corresponding modification of both the phase and group velocities of 
the light. In this sense, light beams with non-zero kx and ky are naturally dispersive, even 
in free space. 

 

 

Figure 1. Adding spatial structure to a light beam. (A) A Bessel beam can be created 
using an axicon producing conical phase fronts of angle ±. (B) A ray entering a confocal 
telescope at radius r will travel an additional distance proportional to cos-1 ² . 

Extending upon the case of a mode within a hollow waveguide, an example of a 
structured beam is a Bessel beam (Fig. 1A), which is itself the description of a mode 
within a circular waveguide (1, 6). In free space, Bessel beams can be created using an 
axicon, or its diffractive optical equivalent (7), that converts a plane wave into conical 
phase fronts characterized by a single radial component of the wavevector, 𝑘𝑟 =
�𝑘𝑥2 + 𝑘𝑦2 (8–10). This single value of the radial component gives a unique value of 
𝑘𝑧 < 𝑘0 and hence uniquely defined phase and group velocities (11). 

To avoid complications arising from the finite thickness of refractive optical elements, we 
use diffractive optics, idealized as having zero thickness. For a Bessel beam created with 
a diffractive optic (7), characterized by 𝑘𝑟 (with 𝑘𝑟 ≪ 𝑘0), the axial component of the 
wavevector is given by 𝑘𝑧 = 𝑘0 − 𝑘𝑟2 2𝑘0⁄ . The resulting phase velocity and group 
velocity along z are 
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𝑣𝜙 = 𝑐 �1 − 𝑘𝑟2

2𝑘02
�
−1

 and  

𝑣𝑔,𝑧 = 𝑐 �1 − 𝑘𝑟2

2𝑘02
�. 

This modification of the phase and group velocities of Bessel beams has been examined 
in the classical, many-photon regime. Subtle changes in velocity have been previously 
studied using Bessel beams in the microwave (12) and optical regimes (13–15). 

We demonstrate the intrinsic and linear nature of this reduction in group velocity, by 
measuring the delay in the arrival time of single photons. Over a propagation distance of 
𝐿, the reduction in the group velocity compared to the plane-wave case gives a delay of 

 𝛿𝑧Bessel ≈ 𝐿 𝑘𝑟2

2𝑘02
= 𝐿

2
𝛼2. (1) 

As an example, for an axicon designed to produce 𝛼 = 𝑘𝑟 𝑘0⁄ = 4.5 × 10−3 over a 
propagation distance of 1 m, we predict a delay of ~30 fs, corresponding to a spatial 
delay of 10 µm. 

To measure the arrival time of single photons with femtosecond precision we adopt a 
method relying upon a quantum effect, namely, the Hong-Ou-Mandel (HOM) 
interference (16). A parametric down-conversion source is used to produce photon pairs 
that are strongly correlated in their wavelengths and their generation time. One photon 
can then act as a reference, against which the arrival of the other photon can be compared 
(Fig. 2). This second photon goes through a free-space propagation section, in which a 
first spatial light modulator (SLM) can be programmed to act as a diffractive optical 
element implementing axicons or lenses. A second SLM then reverses the structuring 
introduced by the first. When the arrival times of the two photons incident on a beam 
splitter are matched to a precision better than their coherence time, both photons emerge 
from the same output port. Under this matched condition, the coincidence rate for 
detection at the two output ports of the beam splitter falls to zero, which results in what is 
known as a HOM dip. The position of the dip is recorded as a function of the spatial 
shaping of the photon propagating in free space. 
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Figure 2. Experimental apparatus. Photon pairs from a parametric down-conversion 
source are separated by a knife-edge prism (KEP); a band-pass filter (BPF) sets the 
spectral profile of the down-converted light. Half-wave plates (HWP) are used to 
maximize the efficiency of the spatial light modulators (SLM), and match the polarization 
of the polarization-maintaining fibers (PMF). Signal and idler photons enter a fibre-
coupled beam splitter (BS) (17), whose outputs are single-mode fibers (SMF) connected 
to avalanche photodiodes (SPAD). The SPADs feed a coincidence counter.  

 

Figure 3. Experimental results for a Bessel beam. (A) Measured Hong-Ou-Mandel 
dips for two values of ± (±1 = 0.00225, red; ±2 = 0.00450, blue) and the ± = 0 case (black), 
with corresponding best fits (16). (B) Measured delays (hollow circles) and theoretical 
prediction from Eq. 1 (solid line), for different values of ±. The delays are expressed with 
respect to the ±= 0 case, corresponding to an unstructured collimated beam.  

Taking the Bessel beam as our first example, the transverse structuring can be turned on 
and off for each value of path delay. The corresponding position of the HOM dip can then 
be directly compared between the two cases. Figure 3A shows the baseline-normalized 
coincidences for two different values of 𝛼 = 𝑘𝑟/𝑘0 (where we define the baseline as the 
coincidence count at path delay far from the dip position). In all cases the width of the 
HOM dips is the same, set by the 10 nm spectral bandwidth of the down-converted 
photons. The key result is that the HOM dip associated with the Bessel beam is delayed 
with respect to the dip obtained for a collimated beam. We measure a delay of 2.7±0.8 
µm for the case of 𝛼1 = 0.00225 rad and 7.7±0.8 µm for 𝛼2 = 0.00450 rad. These 
measured values agree with theoretical predictions of 2.0 µm and 8.1 µm for 𝛼1 and 𝛼2, 
respectively.  
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The analytical form of this predicted delay (Eq. 1) suggests a simple geometrical model, 
where the delay arises from the additional length of the diagonal ray, propagating at an 
angle 𝛼 with respect to the optical axis. In Fig. 3B we compare the measured and 
predicted values for the delay, showing that Eq. 1 is valid over the range of angles that we 
tested for the Bessel beam. 

Perhaps the most common form of spatial structuring of a light beam is focusing, which 
also leads to a modification of the axial component of the wavevector. We consider the 
propagation of light through a telescope comprising two identical lenses separated by 
twice their focal length, 𝑓 (i.e. a confocal telescope). Assuming a ray-optical model, a co-
axial ray incident upon the first lens at radius 𝑟 emerges from the second lens co-axially 
at the same radius but inverted about the optical axis (Fig. 1B). Comparing the on-axis 
separation of the lenses to this diagonal distance gives an additional distance traveled of 
𝛿𝑧 = 𝐿 cos 𝛽 − 𝐿 ≈  𝑟2 𝑓⁄  ⁄ , where 𝛽 is the angle between ray and optical axis. 

For a beam of Gaussian intensity distribution with 1/e2 radius 𝑤, the expectation value of 
𝑟2 is 〈𝑟2〉 = 𝑤2 2⁄ . Therefore, the expected delay 𝛿𝑧Gauss for a Gaussian beam on 
transmission through a confocal telescope is 

𝛿𝑧Gauss = 𝑤2 2⁄ 𝑓 = (𝑤 𝑓⁄ )2 × 𝑓 2⁄ , (2) 

where w is the waist of the input beam. The delay is a quadratic function of the quantity 
𝑤 𝑓⁄ , which can be considered as a measure of the beam divergence, defined by the 
numerical aperture of the system. The delay increases with increasing numerical aperture. 
This geometrical model and a rigorous theoretical calculation provide the same results for 
both the Bessel and confocal cases, within the same approximations (18, 19). The full 
theoretical model, however, applies to any arbitrary field. As the delay increases with the 
square of the numerical aperture, the delay becomes progressively harder to detect at 
longer distances. 

The delay arising from focusing is shown in Fig. 4. Trace A shows the position of the 
HOM dip for the case of a collimated beam, and trace B shows its position for the case of 
𝑓 = 0.40 m. We measure a delay of 7.7±0.4 µm for the focused case. This is comparable 
to the predicted delay based on Eq. 2 which, for our beam of 𝑤 = 2.32 ± 0.09 mm, is 
6.7± 0.6 µm. The slight difference between our measurement and the predicted value is 
likely due to residual aberrations and imperfect collimation, leading to an ill-defined 
beam waist, upon which the delay is quadratically dependent. 

We further investigate the dependence of the delay upon the beam structure by 
introducing aperture restrictions to the beam, in the form of center and edge stops (insets 
of Fig. 4). Results are shown in traces C and D in Fig. 4, together with the full-aperture 
focused beam case (red line, trace B). A center stop increases the expectation value of 𝑟2, 
thereby increasing the delay compared to the full-aperture case. Trace C shows the dip 
with a center stop of radius 1.4 mm, as shown in inset C. We measure a dip position 
additionally delayed by 7.3±0.4 µm compared to the full-aperture focused beam, giving a 
total delay of 15.0±0.6 µm. Next, we introduce an edge stop of the same radius, as shown 
in inset D. By restricting the aperture, the expectation value of 𝑟2 is decreased, 
decreasing the delay with respect to the collimated case. Trace D shows the position of 



 6 

the HOM dip, which is now reduced by 6.4±0.4 µm with respect to the full-aperture case, 
resulting in a total delay compared to the collimated case of 1.3±0.6 µm.  

 

Figure 4. Measured Hong-Ou-Mandel (HOM) dips for collimated and focused 
Gaussian beams. (Left panel) HOM dip comparison for collimated (black) and focused 
(red) Gaussian beam. Minima are marked by A and B. (Right panel) HOM dip 
comparison for cases with an r = 1.4 mm center stop (blue, corresponding to inset C), and 
an edge stop of the same radius (gray, corresponding to inset D). Minima are marked by 
C and D.  The red dashed curve is shown as reference. 

It is important to consider three possible sources of systematic errors. Firstly, the phase 
values of all the pixels of the SLMs lie between 0 and 2À with an average value of HÀ. 
Regardless of what optical component is encoded on the SLMs, the effective thickness of 
the liquid crystal, as averaged over the full aperture, remains the same. Consequently, the 
observed delay is not a result of the SLMs themselves. Secondly, the width of the HOM 
dip remains compatible with the interference filter used. Therefore the coherence time of 
the light is unchanged by the setting of the SLMs and therefore the magnitude of the 
delays cannot be a result of spectral post-selection. Thirdly, one must ensure that the 
delays are not due to misalignment in the optical paths. In aligning the experiment, we 
used back-projection (20). More importantly, the alignment for the cases where we have 
aperture restrictions remains the same (the coaxial apertures do not change the path of the 
beam). Hence, the delays we measure can only result from the transverse structure of the 
beam and indeed are consistent with our theoretical predictions. 

Our measurement of group velocity is strictly a measurement of the difference in 
propagation speed between a reference photon and a spatially structured photon. No 
direct measurement of the speed of light is made. Within this manuscript, the velocity we 
measure is strictly the group velocity of the photons (21). 

The speed of light in free space propagation is a fundamental quantity. It holds a pivotal 
role in the foundations of relativity and field theory, as well as in technological 
applications such as time-of-flight measurements. It has previously been experimentally 
established that single photons travel at the group velocity (21). We have now shown that 
transverse structuring of the photon results in a decrease in the group velocity along the 
axis of propagation. We emphasize that in our full-aperture experiments, no pre- or post-
selection is applied to the spatially structured photons, and that the group velocities are 
always compared over the same propagation distance, much as if they were in a race. The 
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effect can be derived from a simple geometric argument, which is also supported by a 
rigorous calculation of the harmonic average of the group velocity. Beyond light, the 
effect observed will have applications to any wave theory, including sound waves. 
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General case for free propagation

The delay that we observe in the experiment was estimated using a geometric, simple ray-optic model.

Here, we derive a rigorous theory that applies to any arbitrary field. It is experimentally established that

single photons travel at the group velocity, hence we will concern ourselves only with the group velocity.

The calculation of the photon travel time is based on the calculation of the group velocity of the photon,

which in general depends on the radial profile and position along the propagation axis. This is explicitly

shown for a Gaussian beam in (18), but we formulate it here for any arbitrary field. To take an effective

group velocity of the electromagnetic field over a volume in which the velocity is changing, one would need

to take a harmonic mean of the group velocity and also weight by the local intensity of the field. The group

velocity along the propagation of direction z of a beam with phase profile Φ and central frequency ω0 is

given by

v(z)
g =

(
∂2Φ
∂z∂ω

)−1

ω0

.

The average velocity over an interval (z1, z2) becomes(
1

z2 − z1

∫ z2

z1

(
∂2Φ
∂z∂ω

)
ω0

dz

)−1

= (z2 − z1)

([(
∂Φ
∂ω

)
ω0

]z2
z1

)−1

which, when the integration is generalized to cover the whole volume between the z1 and z2 planes, using

the local intensity as a weighting function, simplifies to

(z2 − z1)/=

[
∂

∂ω

(
〈ψ(z, ω0)|ψ(z, ω)〉
〈ψ(z, ω0)|ψ(z, ω0)〉

)
ω0

]z2
z1

.

Here the function ψ(x, y, z|ω), represented in the bra-ket notation as |ψ(z, ω)〉, denotes the transverse

profile of the spectral component of the beam at frequency ω in a scalar approximation. As is the convention,
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we assume that the phase Φ is the complex argument of the functional value of ψ. This only gives positive

phase speed (in other words, it describes a wave travelling in the direction of the +z axis) if the notation is

chosen so that the kz term has a +i coefficient in the exponent.

If we use this group velocity to calculate the time it takes a wave packet to cover the distance z2 − z1,

we obtain

t = =

[
∂

∂ω

(
〈ψ(z, ω0)|ψ(z, ω)〉
〈ψ(z, ω0)|ψ(z, ω0)〉

)
ω0

]z2
z1

=
[
∂

∂ω
(arg〈ψ(z, ω0)|ψ(z, ω)〉)ω0

]z2
z1

.

Thus, the delay of a nonplanar wavefront, compared to a plane wave that travels at speed c (which we

approximate with a collimated beam in the experiment) is

δz = ct− (z2 − z1) =
[
∂

∂k
(arg〈ψ(z, k0)|ψ(z, k)〉)k0 − z

]z2
z1

.

Our experiment is well within the paraxial approximation, in which case the above expression for δz can

be simplified even further. The wave function ψ(x, y, z|k) evolves from z1 to z2 according to the paraxial

wave equation,

∂ψ

∂z
=

i

2k
∆⊥ψ + ikψ,

where ∆⊥ = (∂/∂x)2 + (∂/∂y)2. Then,

|ψ(z2, k)〉 = exp
(
iL

2k
∆⊥ + ikL

)
|ψ(z1, k)〉,

where L = z2 − z1,

〈ψ(z2, k0)|ψ(z2, k)〉 = 〈ψ(z1, k0)| exp
(
iL

2k
∆⊥ −

iL

2k0
∆⊥ + i(k − k0)L

)
|ψ(z1, k)〉,

and

δz = − L

2k2
0

<〈ψ(z1, k0)|∆⊥|ψ(z1, k0)〉
〈ψ(z1, k0)|ψ(z1, k0)〉

.

Note that ∆⊥ can be written as −k̂2
⊥, where

k̂⊥ = −i∇⊥

is the quantum mechanical operator corresponding to the transverse wave vector. This implies that ∆⊥ has

a negative real expectation value and the final expression for δz can be established as

δz =
L

2k2
0

〈k̂2
⊥〉|ψ(z1,k0)〉. (1)

Interestingly, as a side result we can see that the effective group velocity

vg =
c

1 + 〈k̂2
⊥〉

2k2
0

≈ c

(
1−
〈k̂2
⊥〉

2k2
0

)

is invariant under the free propagation and always smaller than c.
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Special cases: Bessel and Gaussian beams

We can now use Eq. 1 to calculate the delays for the cases of Bessel and Gaussian beams. The former

is simple in that there is a single value of |k⊥|, which is exactly the radial component of the wavevector,

denoted kr in the main text. Using this we find that in our case (Fig. 1A) the delay is

δzBessel = L
k2
r

2k2
0

.

For a Gaussian beam of initial beam waist w0, focused by a lens of focal length f , the quantity 〈k̂2
⊥〉 can

be calculated as

〈k̂2
⊥〉 =

2
w2
f

,

where wf = 2f/(k0w0) is the waist of the focused beam. This leads to an expression for the delay in our

case (Fig. 1B)

δzGauss =
w2

0

2f
.

We underline that these equations are exactly the same as that obtained from a simple geometric model as

described in the main text.

For the cases where we put sharp aperture restrictions (the center and edge stops), a direct application

of Eq. 1 leads to an infinite slowing down because of the diffraction on the boundaries, which result in a

broad-tailed distribution of k⊥. However, we can still give an estimate of the delays by recognizing that

δzGauss =
w2

0

2f
=
(
w2

0

2

)
1
f

=
〈r2〉
f
,

where 〈r2〉 is the expectation value of the square of the radius of the beam weighted by the Gaussian inten-

sity distribution. For the cases where we place center and edge stops of radius 1.4 mm, we can renormalize

the resulting obstructed and truncated Gaussian distributions and calculate 〈r2〉. Doing so leads to delay

estimates of 11.6 µm and 2.1 µm for the center and edge stops, respectively, compared to the collimated

case.

A more careful analysis of the detection part shows that the broad tail of the distribution of k⊥ is removed

by means of postselection on the principal maximum, naturally implemented in our case by the geometry

of the second SLM. Taking into account the shape of the aperture at the end of the free-space propagation,

it can be shown that the full prediction of δz can actually be expressed as the weak value

δz =
L

2k2
0

<
〈ψ′(z1, k0)|k̂2

⊥|ψ(z1, k0)〉
〈ψ′(z1, k0)|ψ(z1, k0)〉

,
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with |ψ′(z1, k0)〉 being the effective projection state at z2 back-evolved to the plane z1. This reduces to Eq. 1

in the case where |ψ′(z1, k0)〉 = |ψ(z1, k0)〉, corresponding to detection of the entire wavefront. Without

going into further detail, we conclude that this description presents a good quantitative agreement with our

experimental results and could possibly lead to other interesting cases.


