3d single-ion magnets

Craig, G. and Murrie, M. (2015) 3d single-ion magnets. Chemical Society Reviews, 44(8), pp. 2135-2147. (doi: 10.1039/C4CS00439F) (PMID:25716220)

[img]
Preview
Text
102806.pdf - Published Version
Available under License Creative Commons Attribution.

3MB

Abstract

One of the determining factors in whether single-molecule magnets (SMMs) may be used as the smallest component of data storage, is the size of the barrier to reversal of the magnetisation, Ueff. This physical quantity depends on the magnitude of the magnetic anisotropy of a complex and the size of its spin ground state. In recent years, there has been a growing focus on maximising the anisotropy generated for a single 3d transition metal (TM) ion, by an appropriate ligand field, as a means of achieving higher barriers. Because the magnetic properties of these compounds arise from a single ion in a ligand field, they are often referred to as single-ion magnets (SIMs). Here, the synthetic chemist has a significant role to play, both in the design of ligands to enforce propitious splitting of the 3d orbitals and in the judicious choice of TM ion. Since the publication of the first 3d-based SIM, which was based on Fe(II), many other contributions have been made to this field, using different first row TM ions, and exploring varied coordination environments for the paramagnetic ions.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Craig, Dr Gavin and Murrie, Professor Mark
Authors: Craig, G., and Murrie, M.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Chemical Society Reviews
Journal Abbr.:Chem. Soc. Rev.
Publisher:Royal Society of Chemistry
ISSN:0306-0012
ISSN (Online):1460-4744
Copyright Holders:Copyright © 2015 The Royal Society of Chemistry
First Published:First published in Chemical Society Reviews 44(8):2135-2147
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
618561Pressure-tuning interactions in molecule-based magnetsMark MurrieEngineering & Physical Sciences Research Council (EPSRC)EP/K033662/1CHEM - CHEMISTRY