Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements

Shehata, N., Meehan, K., Hudait, M., Jain, N. and Gaballah, S. (2014) Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements. Journal of Nanomaterials, 2014(401498), pp. 1-7. (doi: 10.1155/2014/401498)

[img]
Preview
Text
101003.pdf - Published Version
Available under License Creative Commons Attribution.

2MB

Abstract

This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymium and samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs). In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce4+ to Ce3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated from the absorbance dispersion measurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which is measured using both techniques: transmission electron microscope (TEM) and X-ray diffractometer (XRD). That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Meehan, Professor Kathleen
Authors: Shehata, N., Meehan, K., Hudait, M., Jain, N., and Gaballah, S.
College/School:College of Science and Engineering > School of Engineering
Journal Name:Journal of Nanomaterials
Publisher:Hindawi Publishing Corporation
ISSN:1687-4110
Copyright Holders:Copyright © 2014 The Authors
First Published:First published in Journal of Nanomaterials 2014(401498):1-7
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record