
Copyright © 2014 The Authors
This work is made available the Creative Commons Attribution 3.0 License (CC BY 3.0)

Version: Published

http://eprints.gla.ac.uk/100485

Deposited on: 26 March 2015
Rankine cycle efficiency gain using thermoelectric heat pumps

J. Siviter, A. Montecucco, A.R. Knox
School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, United Kingdom

HIGHLIGHTS

- Rankine cycle electrical power plant fuel load reduced by over 1.5
- Thermoelectric heat pumps are used to increase the efficiency of the Rankine cycle.
- We scavenge the enthalpy released in the condenser for preheating the return water.
- We measure with a new test rig the optimum COP for maximum efficiency increase.
- We show a cost-benefit analysis of applying the system to a thermal power plant.

ABSTRACT

The Rankine cycle remains the dominant method of thermal plant electricity generation in the world today. The cycle was described over 150 years ago and significant performance advances continue to be realised. On-going metallurgy research has enabled the operating pressure and temperature of the boiler and turbine to be increased, thereby improving the cycle efficiency. The ubiquitous use of the Rankine cycle on a massive scale in conjunction with fossil fuels as the energy source continues to motivate further efficiency improvements in the cycle.

Previous work established a theoretical basis for the use of thermoelectric heat pumps (THPs) in the condensation process of the Rankine cycle to positively impact cycle efficiency. The work presented here experimentally validates this prior work and provides performance metrics for current commercially available THPs and quantifies how their use can increase the efficiency of the Rankine cycle as implemented in a large power plant.

A commercial THP is characterised to obtain its Coefficient of Performance (COP) variation with input current and the amount of thermal energy transported. A larger-scale system comprising of a multistage thermoelectric heat pump is then considered, demonstrating that using commonly available THPs a fuel load reduction of over 1.5% is achievable for a typical 600 MW generating set whilst simultaneously increasing the overall plant cycle efficiency from 44.9% to 45.05%.

The paper concludes with a cost-benefit analysis of the system, showing that over a four year period the saving in fuel used can easily re-coup the capital cost incurred by the addition of the condenser heat pump.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Globally, Rankine-cycle based power plants are the dominant means of electrical power generation. Large thermal power plants utilise high pressure and temperature steam to maximise the thermal to electrical energy conversion with, for modern plant, a cycle efficiency approaching 50% [1]. However, the majority of these plants derive their thermal energy from the combustion of fossil-fuels and, in doing so, emit large amounts of CO₂ [2]. This CO₂ release is the focus of EU policy and the European Commission’s ‘Roadmap for moving to a low-carbon economy in 2050’ [3] presents the motivations to achieve an 80% reduction in greenhouse gas emissions by 2050.

CO₂ capture and sequestration (CCS) technologies will almost certainly be required in fossil-fuelled thermal power plants to achieve the reductions sought [4]. Three methods of CCS are widely regarded as being suitable for this task: (i) pre-combustion capture; (ii) post-combustion capture; and (iii) combustion in oxygen. All three processes are energy intensive and contribute to a significant reduction in overall plant cycle efficiency [5]. CCS is the
primary technology necessary to meet present and future energy demands at acceptable carbon emission levels, however, other improvements in the thermal power plant must also be made to limit increasing costs [6]. Beer [7] examines the impact of reducing CO₂ emissions from thermal power plants and the associated penalties each of the various configurations introduce; these are summarised in Table 1.

The Carnot cycle describes the theoretical relationship between the temperature difference in the heat process and the maximum amount of work that can be extracted from the process [8]. The reduced efficiency of the Rankine cycle with respect to the Carnot cycle is a consequence of the lower average temperature of the heat input to the Rankine cycle. The Rankine cycle is always below this limiting condition due irreversibilities and losses inherent in the physical realisation of the process. However, the absolute electrical output and thermal efficiency of a Rankine cycle power plant can still be improved in a number of ways. Examples include varying the steam inlet pressure and temperature [9] and lowering the condenser pressure [10]. From a commercial perspective there is also the economic cost of cycle enhancements to be considered. A recent study of plant located in China [11] concluded that cost efficiency improvements are a significant driver in plant development and the reduction of CO₂ emissions. Similarly, the use of reheating cycles to increase the practically attainable efficiency is well documented [12,13], and investigation of the performance losses attributable to the cooling circuit directly impacts the up-time and availability of the plant [14].

The most commonly used heat transport fluid in the conventional Rankine cycle is pure H₂O for high temperature plant; for lower temperature or low-grade thermal sources organic fluids with a much lower boiling point may be substituted and are frequently referred to as Organic Rankine Cycles (ORC). Efficiency improvements can be achieved by applying the ORC to the plant in specific locations where energy is lost to the environment – so-called “bottoming cycles” – and these have been extensively investigated [15–21]. All, to a greater or less extent, improve the intrinsic cycle efficiency but at a financial cost.

1.1. Heat pumps

Conventional heat pumps have been previously identified as a technology that can potentially aid the reduction in CO₂ emissions, while improving the net efficiency of energy intensive processes [22–25]. Further, there have been several applications of heat pumps in the literature of THPs replacing conventional heat pumps for air conditioning and refrigeration applications [26–28]. However, to date, little is available in the literature which considers the use of condenser heat pumps as an alternative to bottoming cycles and the authors are not aware of any investigations published which examine the use of thermoelectric heat pumps in this role.

Thermoelectric modules consist of n- and p-type semiconductors arranged in usually square arrays that can be used in two different ways: in heat pumping mode they utilise the flow of an electrical current through the module to produce a thermal gradient according to the Peltier effect, while in power generating mode they generate an electrical current in an external circuit from an imposed temperature difference, exploiting the Seebeck effect [29,30]. In the latter case they are usually referred to as thermoelectric generators (TEGs) and for the former, as thermoelectric heat pumps (THPs). The coefficient of performance in heating mode, COPₜ, where the electrical input power is transported to the ‘hot’ side of the device is defined as the ratio of heat pumped (Qₜ) to power input (Pᵢₚₚ), and is expressed in Eq. (1).

\[
\text{COP}_t = \frac{Q_t}{P_{in}} \quad \text{COP}_p = \frac{Q_c}{P_{out}}
\]

Thermoelectric devices do not use any harmful refrigerants, have no moving parts, are electrically and mechanically robust, are silent in operation and have a high inherent reliability [31]. These attributes make them an attractive option for power plant use where continuous service is a primary consideration.

Thermoelectric devices have been applied to refrigeration cycles [32] and some investigation of their application to electrical power generation in thermal power plants has been conducted [33–35]. However, for power generation from waste heat the output obtained is either so low as to be unviable, or their use has resulted in a net decrease of the overall plant efficiency, due principally to the low thermal to electrical conversion efficiency of the TEGs.
Knox et al. [36] proposed to use thermoelectric devices in heat pumping mode inside the condenser. They also quantified the potential benefits achievable [37], when considering a 600 MW_c generating set in a 44.9% efficient thermal power plant. By the addition of a THP system with an overall COP_h of 3 in the plant condenser a 0.4% increase in cycle efficiency and a 3% reduction in fuel supplied to the boiler was achievable.

This paper extends the previous work and presents results for commercial THPs intended for the condenser application described by Knox et al. By combining the theoretical model and experimental results the practicality of their application is assessed. The findings lead to the conclusion that savings in fuel costs and CO₂ emissions are quite feasible and economically attractive to the plant operator.

2. Thermoelectric heat pump (THP) theory

Thermoelectric heat pump operation depends principally on the Peltier effect: as electrical power is applied to the <i>n</i>- and <i>p</i>-couples it causes the movement of charge carriers, driving heat transfer through phonon transport. As the temperature difference across the device increases, the Seebeck effect has an increasingly significant role in producing an EMF that acts to counter the applied voltage, leading to reduced current flow. Due to the electrical resistance of the semiconductor material, Joule heating is also present, being proportional to the square of the current flowing in the device. In order to assess the thermoelectric device performance limits, the maximum heat flux and efficiency of converting electrical power to thermal energy transport are measured. Prior work [32,38] has shown the impact that the pellets’ cross-sectional area for a TE device applied as a cooler to achieve the maximum performance.

The application of a thermoelectric heat pump to the Rankine cycle establishes an increase in feed water temperature (Δ<sub>T_w</i>) returning from the condenser to the boiler. The modified cycle is shown schematically in Fig. 8 in Section 5.1 where the revised physical layout is discussed in detail. This is achieved by passing the feedwater over the ‘heated’ side of the device. Use of THPs for this type of application is now well established. Previous work [39] has investigated the optimal pellet length and cross-sectional area for a TE device applied as a cooler to achieve the maximum cooling power. Phelan et al. [40] investigated the impact of the thermal resistance on the COP of cooling for a THP, especially if the heat transfer medium is air and this is further emphasised by the heat removal side of the test fixture: one in contact with the THP heat sink faces. As the device experienced thermal contraction and expansion effects, mechanical compliance is provided by a compression spring in the clamping arrangement for the device. A stepper motor is used to adjust the spring’s preload and control of the set point is via a load cell and software feedback loop to the stepper controller. The use of a stepper motor enabled extremely accurate control of the pressure between the surfaces of the THP’s and the heat sink faces. As the device experienced thermal contraction and expansion the stepper motor adjusted the pressure to ensure optimal pressure conditions defined by the manufacturer of 1.25 MPa² were maintained. The heat source in the apparatus comprises of a copper block containing two Silicon Nitride electrical heaters operated in parallel, each able to provide up to 500 W. Heat source temperature measurement is by the use of three thermocouples – one at the thermoelectric device ceramic face in contact with the hot-side heat sink and the others in contact with the upper face of each of the heaters. A further three thermocouples are used on the heat removal side of the test fixture: one in contact with the THP ceramic face and the other two to measure the inlet and outlet water temperatures of the titanium labyrinth heat exchanger block. This configuration of test fixture allows the precise measurement of thermal power flow to, through and from the device under test. Thermal losses due to convection and radiation are minimised by insulating the whole fixture using glass fibre and additionally by placing a thin Mica sheet around the exposed thermoelectric pellets on peripheral

1 The thermoelectric device tested is a European Thermodynamics Ltd ET-127-20-15-RS having dimensions 55 x 55 x 4.6 mm. Ceramic height = 0.3 mm, 0.3 μm in solder and 4 mm pellet length.

2 For a 50 x 50 mm THP a clamping force of 1.25 MPa equates to 378 kg on a 55 mm dimension thermoelectric device.
faces of the THP. This also minimises any effects due to ambient air movement in the vicinity of the test fixture. Thermal conduction is via the thermoelectric device under test; the clamping arrangement ensures there are is minimal heat loss through the clamping apparatus.

The quantity of energy transported from the ‘cold’ to the ‘hot’ side is the sum of that converted from electrical to thermal form via the heaters and Q_H. Energy pumped from the cold side is determined by precise measurement of the temperature rise of a known mass flow rate of water. The actual energy provided by the electrical power supply is then subtracted to give Q_H, and shown in Eq. (2).

$$Q_H = mC_p\Delta T_{wo-wi}$$ (2)

Accurate measurement of the change in water temperature is achieved by the use of the thermocouples placed at the entrance and exit of the aluminium labyrinth heat exchanger. The mass flow rate is determined by the displacement of the gear pump (a specification parameter) and the mechanical RPM of the pump rotor. The Coefficient of Performance (COP heating or cooling) is given by the ratio of the thermal energy to electrical energy (Eq. (1)).

3.1. Determination of the coefficient of performance of heating

As previously noted, the COP of a THP is determined by a complex and non-linear interaction between the Seebeck and Peltier effects, Joule heating, the amount of thermal energy being pumped and over what temperature range. To obtain the COP of the thermoelectric device for a given ΔT_{THP} requires that the electrical current applied to it is increased in a series of steps from zero to a value where the peak Q_H has been passed, subject to the constraint that I_{max} is never exceeded. This is repeated for a range of ΔT_{THP} across the device to obtain a family of curves that describe device performance. The optimum current (I_{opt}) corresponds to the peak value of the COP for the particular ΔT_{THP} under consideration. To obtain a family of COPs curves for the chosen thermoelectric module the following procedural steps are implemented using the automated control program written in VEE Pro.

(a) All system components are allowed to reach thermal equilibrium at the ambient temperature of the laboratory.

(b) The desired temperature difference across the device under test, the desired mechanical clamping pressure, input electrical current increment and maximum current are all set in the control programme by the user. The programme then calculates the V_{max} of the device and sets the power supply to operate in constant voltage mode.

(c) The instruments are programmed and an initial set of measurements at $\Delta T_{THP} = 0$ (i.e. when the system is still in thermal equilibrium) is taken. These readings are subsequently used to calculate the calibration offset factors for each of the thermocouples used.

(d) The flow rate through the gear pump and the chiller temperature are set.

(e) The control programme then starts incrementing the current applied to the THP.

1. For each increment, the desired temperature across the device is maintained using a software PID control loop by varying the electrical power supplied to the Silicon Nitride heaters. This provides a source of thermal energy at the ‘cold’ side for the THP to pump to the heated side.

2. The control programme then waits until the temperatures have stabilised at the desired temperature difference (determined by obtaining 5 successive readings within the desired temperature tolerance, each separated by 5 s) and then the programme then records the temperature of each of the heaters, the heatsink surfaces (at Q_H and Q_C), and the water inlet and the water outlet temperatures as shown in Fig. 2.

3. For each measurement taken the ratio of input electrical energy to the resultant thermal power flow to the ‘hot’ side is determined.

4. The control software calculates the next electrical current value and returns to step (e).

(f) When the maximum device current is reached the test for this particular ΔT_{THP} is complete and the programme saves the recorded data to file.

A typical set of data obtained using this technique is shown in Fig. 3. Error bars are included, based on the known uncertainty in the parameter measurements and indicate a 2% margin in measurement error.

3.1.1. Additional tests at low power

During testing using the water block heat exchanger it was found that, for low values of P_{THP}, accurately determining the increase in Q_H was exceptionally difficult because the temperature...
difference in the fluid between the input and output of the heated water loop was a few thousandths of a Kelvin, even at low flow rates. This is less than the short-term repeatability of the temperature measurement accuracy of the Agilent data logger, despite using the in-built functions to improve accuracy. In order to facilitate more accurate measurements at low \(Q_h\), a supplementary thermal characterisation was undertaken.

For this additional work the temperature change of thermal masses with known specific heat capacities were recorded over a pre-determined time interval. Two blocks of 99.8% pure copper were accurately weighed and the THP then sandwiched between them. The assembly was clamped together using tension springs to provide a compressive force \(^1\) of 0.8 MPa. The whole arrangement was then isolated from ambient temperature fluctuations and drafts by placing it in an insulated box filled with glass fibre. The thermocouples were placed in small diameter holes drilled in the copper blocks, rather than directly on the THP ceramic surfaces as previously. This thermocouple placement gave a greater accuracy in the actual temperature measurement taken and minimised any uncertainty associated with the quality of the thermal contact to the THP ceramic faces. Before experimental data were recorded, a set of measurements was taken to confirm that for small \(\Delta T_{\text{TLP}}\) over a period of 5 min the copper blocks were isothermal to the measurement accuracy of the apparatus. Once this had been established a constant current was applied to the THP in 0.1A increments. For each, the temperature at either side of the THP was recorded at ten second intervals. At low THP power the temperature increase between each measurement is small therefore the increase in temperature between each measurement \((\Delta T_{\text{Cu}})\) is calculated over a 60 s interval by post-processing the data after the measurements for a particular current level had completed. The rate of energy increase and decrease at the respective sides of the THP is determined by Eq. (3).

\[
Q_h = \frac{mC_p\Delta T_{\text{Cu}}}{\Delta t}
\]

where \(m\) is the mass of the block, \(C_p\) is the specific heat capacity and \(\Delta t\) is the time required to change the block temperature by \(\Delta T_{\text{Cu}}\).

The physical data for the hot-side and cold-side copper blocks are shown in Table 2.

The data obtained by both methods were merged to provide a set of measurements that describe the THP performance over the temperature and input current ranges of interest. By extracting the COP data at a specific \(\Delta T_{\text{TLP}}\) and specific current, the COP\(_h\) vs. current curve for each \(\Delta T_{\text{TLP}}\) can be obtained for the device tested. An example set of such COP\(_h\) curves is shown in Fig. 4.

3.2. Correlation of optimum operating condition by \(\frac{I}{I_{\text{max}}}\)

Both the \(I_{\text{max}}\) and \(V_{\text{max}}\) rating of a thermoelectric heat pump are important when defining the highest available COP\(_h\) for a given \(\Delta T_{\text{TLP}}\). Where \(V_{\text{max}}\) and/or \(I_{\text{max}}\) are applied to the THP the result is the maximum possible COP\(_h\). These quantities do not represent the maximum voltages and currents the device can withstand but they are the values that yield the greatest \(\Delta T_{\text{TLP}}\) across the device. However, the voltage across the device is directly proportional to the temperature difference (due to the Seebeck effect), and at \(I_{\text{max}}, Q_h = 0\). The greatest thermal transport occurs at some value less than \(I_{\text{max}}\). Therefore, at specific \(\Delta T_{\text{TLP}}\)’s in a practical application the optimum operating point will depend principally on the current passing through the device. The coefficient of performance relates the current (or voltage) applied to the THP and the amount of thermal energy pumped. In applications where efficiency (rather than absolute heat pumping capacity) is the primary concern, knowledge of the variation in COP\(_h\) is essential. Unfortunately these COP\(_h\) curve data are rarely published by device manufacturers and hence are derived from experimental data obtained in the manner described above for the purpose of this study.

Fig. 4 shows that at a particular \(\Delta T_{\text{TLP}}\) and low input current the COP\(_h\) rises rapidly to a peak value, followed by an exponential decay to unity. Each temperature difference is measured at opposing sides of the THP and \(Q_h\) is a function of the increase in water temperature \((\Delta T_w)\). At low \(\Delta T_{\text{TLP}}\) and low input power the COP\(_h\) is higher due to a smaller temperature gradient. As the \(\Delta T_{\text{TLP}}\) increases, so the electrical input power must increase and hence the COP\(_h\) curve peak moves to the right along the x-axis, corresponding to an increased value of the ratio \(\frac{I}{I_{\text{max}}}\). As the \(I_{\text{lim}}\) limit approaches, the COP\(_h\) approaches unity as the IR losses dominate the thermal performance – energy dissipated in the semiconductor flows equally to each face. Fig. 5 shows the peak COP\(_h\) values obtained for each of 4 different \(\Delta T_{\text{TLP}}\) in Fig. 4 and the associated \(\frac{I}{I_{\text{max}}}\) ratio.

The graphs in Figs. 4 and 5 show that the greatest COP\(_h\) available from the heat pump is in the region between 0.1 \(I_{\text{max}}\) and 0.3 \(I_{\text{max}}\) where \(I_{\text{max}}\) is the normalised current ratio independent of the maximum heat pumping power achieved in testing. This confirms the basic principle that the attainable COP is inversely proportional to the operating \(\Delta T_{\text{TLP}}\) and quantifies the rather vague data provided by device manufacturers, to the measurement accuracy shown in Fig. 5. A best-fit straight line through the data points in Fig. 4 enables a first-order estimate of the COP\(_h\) at any intermediate \(\Delta T_{\text{TLP}}\). More importantly, establishing these data now permits a robust analysis of the actual performance likely to be obtained from commercially available THPs.\(^4\) The scattering of data points below \(\frac{I}{I_{\text{max}}} = 0.2\) in Fig. 4, especially at low \(\Delta T_{\text{TLP}}\), reflects the great difficulty in repeatably obtaining these data.

\(^1\) The manufacturer’s recommendations for clamping pressure for THP modules are provided in [45].

\(^4\) Ferrotec Thermoelectric Modules [46].
4. Impact on plant cycle efficiency

A fundamental requirement for economic use of condenser heat pumping is to ensure that the input power required for the pumping does not exceed the point at which use of the system detracts from overall cycle efficiency. Prior work has determined theoretically that the break-even point above which the heat pump becomes beneficial is when the COP_h exceeds the reciprocal of the cycle efficiency, i.e., $COP_h = \frac{1}{\eta_{\text{cycle}}}$.

However, this COP_h threshold calculation does not take into account the temperature at which heat pumping occurs and it is therefore of great interest to determine the largest increase in feedwater temperature returning to the boiler that can be obtained whilst still ensuring that the minimum COP_h requirement is met.

4.1. Cascaded THP arrays

Work presented previously by Knox et al. [37] investigates a three-stage heat pump cascade where the condensate loop exiting the boiler is fed through each stage in series, progressively absorbing the thermal energy transmitted to the hot side of each stage and incrementally increasing the feedwater return temperature. The work explores the theoretical background to the application by detailing the minimum COP_h required to be beneficial to the plant by showing that the reciprocal of the plant efficiency gives the threshold for the application of a THP to be beneficial to the plant in terms of cycle efficiency. Further, the work introduces the concept of cascaded THP arrays, varying the voltage and current at each stage to give the desired increase in thermal energy of the water being pumped back to the boiler.

Fig. 6 shows the implementation of cascaded heat pumps in the condenser. The internal temperature of the condenser remains constant (due to the rejection of latent heat occurring isothermally) at each stage and hence the condensate temperature fed back to the boiler through the THP hot sides must progressively increase to absorb the sensible heat and operate at or above the threshold COP_h. Therefore, each stage of the cascade of heat pumps requires different voltages and currents to be applied for optimum operational efficiency.

4.2. Cascade operating points

Steam in the condenser encounters a ‘cooled’ side heat sink of the THP. The steam is at low pressure and hence low temperature (nominally 33 °C/45 mbar-abs). Holding the THP below the dew point of the steam forces condensation and hence releases enthalpy which is transported across the heat pump.

In Fig. 6 the heat pump cascade is split into three stages. The temperature of the feedwater increases with each stage and the temperature difference across successive stages also increases. The following conditions are met: $\Delta T_{w,1} < \Delta T_{w,2} < \Delta T_{w,3}$, while for the actual device: $\Delta T_{\text{THP,1}} > \Delta T_{\text{THP,2}} > \Delta T_{\text{THP,3}}$. For each successive stage the attainable COP_h is reduced in comparison with the previous stage, but is still above the theoretical economic minimum as given by Fig. 5.

In order to present a preferential condensation site in the condenser, the ‘cooled’ side temperature of the heat pump must be below that of the ambient steam conditions. For a typical large thermal plant operating at 33 °C/45 mbar-abs a THP cold side of 32 °C is sufficient to achieve this. The aim of the system presented here is to increase the temperature of the water returning to the boiler to 50 °C. This is achieved by increasing the operating temperature difference of the heat pump (ΔT_{THP}) while maintaining the optimum operating conditions (COP_{opt}) obtained from Fig. 5 for that stage, summarised in Table 3.

5 $COP_h = 2.2$ for $\eta_{\text{th,p}} = 44.9\%$ base cycle efficiency for a typical supercritical plant.
With reference to the data in Fig. 6, at stage 1 the water enters the base of the THP loop at the condensate exit temperature of 33 °C. In order to achieve a water exit temperature of 39 °C, and using the measured thermal resistance of the heat exchanger of 0.07 °C/W then the required 'heated' side temperature of the THP is 42 °C.

Using Fig. 3, for a $\Delta T_{1,THP} = 10$ °C the maximum COP is 3.42 at $I_{\text{max}} = 0.21$. Using the modules characterised in this paper, this equates to supplying 10.1 W$_e$ (3.37 V at 3 A), and producing a resultant $Q_H = 34.6$ W$_{th}$.

At stage 2 water enters at 39 °C and exits at 45 °C giving a required $\Delta T_{2,THP} = 15$ °C ($T_{\text{hot}} = 47$ °C and $T_{\text{cold}} = 32$ °C). At this value, the maximum COP is 3.3 at $I_{\text{max}} = 0.183$. The resultant thermal energy increase to the water feed is 29.9 W$_{th}$ which is achieved by supplying 9 W$_e$ (3.5 V at 2.6 A) to the THP.

For the final stage, the water enters the heat exchanger at 45 °C and increases by 5 °C, exiting at 50 °C. Since the THP$_{old}$ side remains at 32 °C, the $\Delta T_{3,THP}$ must be 20 °C in order to achieve the 52 °C required. The optimum COP$_3$ of 2.62 can be obtained by driving the THP at the optimum $I_{\text{max}} = 0.2$. This gives an equivalent THP input power of 11 W$_e$ (3.9 V at 2.8 A) producing a thermal energy increase to the water of 28.7 W$_{th}$.

The overall Coefficient of Performance of the cascade averages to 3.11, an electrical input power of 30.1 W$_e$ and an overall increase in thermal power of 93.2 W$_{th}$. Using these results the potential for scaling up the heat pumping to a real system can now be examined.

5. Physical plant implementation

The heat pump applied to the Rankine cycle requires electrical power and the matter of the source of this power and at what voltage therefore arises. Following the model presented in Section 4, the three-stage cascade can be extended to accommodate much larger heat pumping powers in real plant.

5.1. Electrical requirements

Energy to drive the THP system is an additional parasitic load on the electrical output of the plant. There are many other such loads in the plant – fans, pumps, conveyor systems, etc., and to cater for different load requirements a variety of 3 phase supplies at different voltages are available. In the case of the THP system a DC supply is needed to ensure unidirectional heat pumping in the heat pump modules. Using the data from Section 4, a putative design for the electrical system to power the condenser heat pump system can be considered. The 3 stage cascade system is replicated in parallel to the required extent to provide the energy necessary to raise the feedwater return temperature to 50 °C. The electrical requirements to do this are presented schematically in Fig. 7 and summarised in Table 4.

![Fig. 7. 12-Pulse AC/DC Rectifier with THP chain.](image-url)
The paper by Knox et al. [37] notes that for currently available THP technology where the operational COP_h is typically <5 there will be a greater amount of energy available in the condenser from steam condensation than can be economically returned to the feedwater loop. Hence for a large string of devices connected electrically in series (thermally in parallel) the cold sides of the devices are in contact with the same steam conditions throughout the condenser. Work by Montecucco et al. [47] has developed this idea for multiple TEG’s to show the effect of series and parallel string configurations has on the output power when subjected to different temperature differences. As the temperature difference across each THP forming one of the stages will be constant, the voltage and internal impedances will be equal, at least to the manufacturing repeatability of the devices, which have performance consistencies of better than 1%. The load current will thus be equal for each device within the same stage and this permits a series/parallel array to be created with convenient electrical drive current and voltage conditions.

With reference to Fig. 7 and for the purpose of this examination, assume a pair of 415 V AC supplies capable of providing 3-phase power is available in the plant from a transformer with outputs 30° apart electrically (a star- and a delta-wound secondary, for example). 415 V AC is preferred over higher voltages, mainly to reduce the electrical insulation requirements and creepage and clearance distances otherwise needed. A 12-pulse rectifier is used to convert the 415 V AC to a nominal 585 V DC. With no output capacitor the ripple voltage is 20 V assuming the conduction angle of each diode pair is 30 degrees. Adding a suitable smoothing capacitor reduces this ripple voltage to 6 V or approximately 1% of the string voltage. This is considered sufficiently 'smooth' for the array of THPs connected to the supply to operate satisfactorily. This DC voltage is supplied to each series-connected chain of thermoelectric heat pump devices.

Many THP chains are connected electrically in parallel array to an individual power supply and are mounted thermally in parallel in the condenser wall. Since each stage of the heat pump cascade operates at a different ΔT_Hp the voltage across each stage varies and requires a different number of THP’s fed from each 415 V AC power pack. Over the large number of devices required there will be a small but significant voltage drop in the wiring required therefore the voltage of each THP is slightly increased, also shown in Table 4. This configuration has the additional benefit of being modular: if a single chain develops a fault, the remaining chains and other cascades can continue to operate unaffected and plant performance is not severely degraded.

Application of such a set of THP arrays to a 600 MW Rankine cycle plant that has a feedwater return rate of 273.6 kg/s from the condenser plant is shown in Figs. 8 and 9. In order to meet this mass flow requirement multiple THP arrays will be required. Using the data in Tables 3 and 4, each THP is capable of attaining the desired heat energy transfer at a mass flow of 0.0013 kg/s, therefore a total of 210,462 devices is required. The sum of the electrical powers to the THP is 6.34 MW_e, which is 1.12% of the net electrical output of the plant. Hence the overall coefficient of performance of heating when applied to the plant is 3.11. As previously shown this is above the minimum threshold for the application of a THP to be beneficial to this plant, the threshold being 1/44.9% or 2.22 leading to a new net electrical output of 19.54 MW_e. Hence the new lower fuel consumption rate is 98.48% and therefore the new plant efficiency is 45.05%.

6. Economic justification for inclusion of the THP

The preceding theoretical analysis and experimental results have demonstrated favourable technical operating conditions for

![Fig. 8. THP Applied to Rankine plant.](image)

![Fig. 9. Application of the THP system to a large scale Rankine plant.](image)
implementing a THP cascade in the Rankine cycle. In order to quantify the economic advantage its impact on a coal-fuelled thermal plant is examined. In the following analysis the additional cost benefit of the reduction in carbon dioxide emissions is excluded for clarity.

6.1. Cost of coal and electricity

Assuming the generating cost of electricity is 3.5 p/kWh and that the plant has load factor of 85% and a capacity of 600 MW, then a saving of £5.1 million per year can be made at the addition of 19.54 MWth of thermal energy to the plant.

If the plant sells electricity at a cost of 4 p/kWh (£40/MW h) then, assuming that 6.334 MWth is supplied to the THP from the plant, the THP reduces the revenue of the plant by £1.89 million per year.

6.2. Thermal plant equipment CAPEX

For a THP system that consists of 210,462 devices for each stage, it equates to 631,386 devices. Assuming a cost price per THP of £10 then the initial capital cost of only the devices is £6.313 million. The infrastructure and other capital expenditures are estimated at double the cost of the devices, giving a total capital expenditure of £12.62 million.

Table 5 shows the interval between the initial capital cost and the payback period, taking into account both the reduced fuel expenditure and lost revenue for decreased sales of kWh of electricity due to the THP system parasitic load. Break-even occurs after a little over 4 years compared with an expected service life of some 30 years for the THP system. This system thus clearly gives a reduced operating cost.

<table>
<thead>
<tr>
<th>Year</th>
<th>Y0</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>THP system</td>
<td>(12.62)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coal reduction</td>
<td>0</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Electricity revenue</td>
<td>0</td>
<td>(1.89)</td>
<td>(1.89)</td>
<td>(1.89)</td>
<td>(1.89)</td>
<td>(1.89)</td>
</tr>
<tr>
<td>Cumulative difference</td>
<td>(12.62)</td>
<td>(9.41)</td>
<td>(6.2)</td>
<td>(2.99)</td>
<td>0.22</td>
<td>3.43</td>
</tr>
</tbody>
</table>

7. Conclusions

Using both experimental evidence and theoretical considerations we have shown that there is scope to improve the cycle efficiency of a thermal power plant using a condenser heat pump system and that today's thermoelectric materials have attained the performance level that makes them a viable technology in this application. More importantly, the THP can be used to reduce the fuel load of the plant through the retention of low grade thermal energy within the overall process; in the above example demonstrating greater than 1.5% reduction in the fuel burnt. Although THPs exhibit a lower COP than vapour-compression alternatives, their reliability and simplicity of operation make them a feasible option and in this system the plant fuel load is reduced by 1.5% with a corresponding increase in overall cycle efficiency to 0.15%. Each of the multistage cascade heat pumps is electrically driven to maximise the COP for the required temperature difference across the array devices – of the order of an τ_{th} ratio = 0.2. Heat pumping power densities of the order of 1 MW/m² are attainable and their low mass makes them suitable for condenser walls in both retrofit and new designs.

The technical feasibility of using large numbers of thermoelectric heat pumps has been investigated. Each stage of the heat pump cascade requires a different operating voltage and current, therefore there are distinct advantages in using large numbers of devices in parallel arrays and selecting the number of devices in a chain to permit varying drive requirements. Electrical power to control the arrays from 415 Vac/3φ supplies allows for cost-effective implementation using standard circuitry.

There are numerous other thermoelectric device applications that are becoming increasingly attractive from an efficiency point-of-view when the rising cost of energy is considered. Therefore, thought must be given to the supply of rare-earth materials used in the production of thermoelectrics, especially when noting that automotive market use is expected to expand very rapidly in the near future. The use of Manganese Silicides as new thermoelectric materials with a high figure-of-merit and found in abundance in the earth's crust are an attractive alternative to Tellurides and are the subject of on-going intense materials research effort as demonstrated by Khan et al. [48] and Mehta et al. [49].

The economic case at the plant level has been examined and, despite the large number of devices, the costs are recoverable in 4 years using a pessimistic estimate of both costs and savings. A more detailed analysis would depend on the particular plant, retrofit vs. new build costs, the prevailing efficiency incentives and subsidies, carbon trading costs, future fuel and Unit selling costs, etc. A future paper will detail the experimental implementation of a thermoelectric heat pump in a small-scale Rankine cycle apparatus that replicates actual power plant steam conditions and will examine the mechanical implementation required for their successful use.

References
