Power analysis for generalized linear mixed models in ecology and evolution

Johnson, P. C. D. , Barry, S. J. E., Ferguson, H. M. and Müller, P. (2015) Power analysis for generalized linear mixed models in ecology and evolution. Methods in Ecology and Evolution, 6(2), pp. 133-142. (doi:10.1111/2041-210X.12306) (PMID:25893088) (PMCID:PMC4394709)

[img] Text
100273.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

390kB

Abstract

‘Will my study answer my research question?’ is the most fundamental question a researcher can ask when designing a study, yet when phrased in statistical terms – ‘What is the power of my study?’ or ‘How precise will my parameter estimate be?’ – few researchers in ecology and evolution (EE) try to answer it, despite the detrimental consequences of performing under- or over-powered research. We suggest that this reluctance is due in large part to the unsuitability of simple methods of power analysis (broadly defined as any attempt to quantify prospectively the ‘informativeness’ of a study) for the complex models commonly used in EE research. With the aim of encouraging the use of power analysis, we present simulation from generalized linear mixed models (GLMMs) as a flexible and accessible approach to power analysis that can account for random effects, overdispersion and diverse response distributions.

We illustrate the benefits of simulation-based power analysis in two research scenarios: estimating the precision of a survey to estimate tick burdens on grouse chicks and estimating the power of a trial to compare the efficacy of insecticide-treated nets in malaria mosquito control. We provide a freely available R function, sim.glmm, for simulating from GLMMs.

Analysis of simulated data revealed that the effects of accounting for realistic levels of random effects and overdispersion on power and precision estimates were substantial, with correspondingly severe implications for study design in the form of up to fivefold increases in sampling effort. We also show the utility of simulations for identifying scenarios where GLMM-fitting methods can perform poorly.

These results illustrate the inadequacy of standard analytical power analysis methods and the flexibility of simulation-based power analysis for GLMMs. The wider use of these methods should contribute to improving the quality of study design in EE.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Johnson, Dr Paul and Barry, Dr Sarah and Ferguson, Dr Heather
Authors: Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M., and Müller, P.
College/School:College of Medical Veterinary and Life Sciences > Institute of Health and Wellbeing > Robertson Centre
College of Medical Veterinary and Life Sciences > Institute of Biodiversity Animal Health and Comparative Medicine
Journal Name:Methods in Ecology and Evolution
Publisher:Wiley-Blackwell Publishing Ltd.
ISSN:2041-210X
ISSN (Online):2041-210X
Copyright Holders:Copyright © 2014 The Authors
First Published:First published in Methods in Ecology and Evolution 6(2):133-142
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record